Skip to main content
ENHU
Home

Main navigation

  • Discover
    • News
    • Events
    • Tenders
  • Research fields
  • Resources
    • Publications
    • Downloads
    • Brochure
  • About us
  • Partners
  1. Home
  2. Publications
Proceedings of Interspeech 2021 pp. 1932-1936

Neural Speaker Embeddings for Ultrasound-Based Silent Speech Interfaces

doi.org/10.21437/Interspeech.2021-1466
Széchenyi Plusz RRF
Abstract

Articulatory-to-acoustic mapping seeks to reconstruct speech from a recording of the articulatory movements, for example, an ultrasound video. Just like speech signals, these recordings represent not only the linguistic content, but are also highly specific to the actual speaker. Hence, due to the lack of multi-speaker data sets, researchers have so far concentrated on speaker-dependent modeling. Here, we present multi-speaker experiments using the recently published TaL80 corpus. To model speaker characteristics, we adjusted the x-vector framework popular in speech processing to operate with ultrasound tongue videos. Next, we performed speaker recognition experiments using 50 speakers from the corpus. Then, we created speaker embedding vectors and evaluated them on the remaining speakers. Finally, we examined how the embedding vector influences the accuracy of our ultrasound-to-speech conversion network in a multi-speaker scenario. In the experiments we attained speaker recognition error rates below 3%, and we also found that the embedding vectors generalize nicely to unseen speakers. Our first attempt to apply them in a multi-speaker silent speech framework brought about a marginal reduction in the error rate of the spectral estimation step.

Authors
Amin Honarmandi Shandiz
László Tóth
Gábor Gosztolya
Alexandra Markó
Tamás Gáspár Csapó
Institutes
Read more
Home

LinkedIn

Become a partner

Subscribe to newsletter

Send partnership request

Explore

  • News
  • Events
  • Tenders
  • Publications
  • Downloads
  • Partners

Research fields

  • Foundations of AI
  • Human Language Processing
  • Machine perception
  • Medical, Health and Biology
  • Security and Privacy
  • Sensors, IoT and Telecommunications

Contact us

Hungary, H-1111 Budapest,
Kende u. 13-17.
+36 1 279 6000
@email

© 2020-2021 Artifical Intelligence National Laboratory, Budapest