Skip to main content
ENHU
Home

Main navigation

  • Discover
    • News
    • Events
    • Tenders
  • Research fields
  • Resources
    • Publications
    • Downloads
  • About us
  • Partners
  1. Home
  2. Publications
POLITICAL ANALYSIS (1047-1987 1476-4989): 14p (2021)   D1

The Multiclass Classification of Newspaper Articles with Machine Learning: The Hybrid Binary Snowball Approach

doi.org/10.1017/pan.2020.27
Széchenyi Plusz RRF
Abstract

In this article, we present a machine learning-based solution for matching the performance of the gold standard of double-blind human coding when it comes to content analysis in comparative politics. We combine a quantitative text analysis approach with supervised learning and limited human resources in order to classify the front-page articles of a leading Hungarian daily newspaper based on their full text. Our goal was to assign items in our dataset to one of 21 policy topics based on the codebook of the Comparative Agendas Project. The classification of the imbalanced classes of topics was handled by a hybrid binary snowball workflow. This relies on limited human resources as well as supervised learning; it simplifies the multiclass problem to one of binary choice; and it is based on a snowball approach as we augment the training set with machine-classified observations after each successful round and also between corpora. Our results show that our approach provided better precision results (of over 80% for most topic codes) than what is customary for human coders and most computer-assisted coding projects. Nevertheless, this high precision came at the expense of a relatively low, below 60%, share of labeled articles.

Authors
Miklós Sebők
Zoltán Kacsuk
Institutes
Read more
Read more
Home

LinkedIn

Become a partner

Subscribe to newsletter

Send partnership request

Explore

  • News
  • Events
  • Tenders
  • Publications
  • Downloads
  • Partners

Research fields

  • Foundations of AI
  • Human Language Processing
  • Machine perception
  • Medical, Health and Biology
  • Security and Privacy
  • Sensors, IoT and Telecommunications

Contact us

Hungary, H-1111 Budapest,
Kende u. 13-17.
+36 1 279 6000
@email

© 2020-2021 Artifical Intelligence National Laboratory, Budapest