Skip to main content
ENHU
Home

Main navigation

  • Discover
    • News
    • Events
    • Tenders
  • Research fields
  • Resources
    • Publications
    • Downloads
    • Brochure
  • About us
  • Partners
  1. Home
  2. Publications
(2021) IEEE ROBOTICS AND AUTOMATION LETTERS 2377-3766 6 4 8277-8284

ChangeGAN: A Deep Network for Change Detection in Coarsely Registered Point Clouds

doi.org/10.1109/LRA.2021.3105721
Széchenyi Plusz RRF
Abstract

In this letter we introduce a novel change detection approach called ChangeGAN for coarsely registered point clouds in complex street-level urban environment. Our generative adversarial network-like (GAN) architecture compounds Siamese-style feature extraction, U-net-like use of multiscale features, and Spatial Trans-formation Network (STN) blocks for optimal transformation estimation. The input point clouds are represented by range images, which enables the use of 2D convolutional neural networks. The result is a pair of binary masks showing the change regions on each input range image, which can be backprojected to the input point clouds without loss of information. We have evaluated the proposed method on various challenging scenarios and we have shown its superiority against state-of-the-art change detection methods.

Authors
Balázs Nagy
Lóránt Kovács
Csaba Benedek
Home

LinkedIn

Become a partner

Subscribe to newsletter

Send partnership request

Explore

  • News
  • Events
  • Tenders
  • Publications
  • Downloads
  • Partners

Research fields

  • Foundations of AI
  • Human Language Processing
  • Machine perception
  • Medical, Health and Biology
  • Security and Privacy
  • Sensors, IoT and Telecommunications

Contact us

Hungary, H-1111 Budapest,
Kende u. 13-17.
+36 1 279 6000
@email

© 2020-2021 Artifical Intelligence National Laboratory, Budapest