Directions and Challenges in Generative Modeling

Christian Szegedy xAI

Generative Language Modeling

OpenAl/ChatGPT

Google/Bard

Personal assistants, text/code generators.

Inflection

Anthropic

Microsoft/Bing

Hugging Face

All are using LLMs (large language models) with 10-100s of Bn parameters trained on most of the public data on the internet.

Challenges

- **Staleness**: past LLMs could only argue about information in their training set
- Running out of training data
- Correctness: Is reasoning any good?
 - No guarantees of correctness
 - No references
- Textual input is restrictive
- **Textual output** is restrictive
- For some tasks (**symbolic computation**) neural networks are inefficient

Current Trends

- Utilizing human feedback

- Fine-tuning on human feedback
- Constitutional AI (train an extra model)

- Retrieval Augmentation

- Can update their knowledge in real time
- Refer to facts after their training.

- Multimodality

- Language models the can interpret other media (images, spoken text, music, video,...)
- Generating other modalities

- Generate own training data

- Tool use (programming environment, reasoning tools, external databases,..)
- Feedback loops (hand-engineered synthetic tasks, self-critique,...)

Future Directions

- Synthetic data generation will hinge on inference throughput.
 - Autoregressive inference is slower than feed-forward pass through the network.
 - Distillation?
 - Diffusion for text?
 - Specialist models?
 - Generate data for retrieval?
- Are 100s of billions of parameters really necessary?
 - ... for each and every token?
- Self-improvement.
 - Should the system learn from its own mistakes? ... Automatically?
 - Self-reflection, self-critique
 - Run the generated code, debug its own output
 - Create provably correct output.