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Shallow networks

weights can be learnt via
backpropagation for a given
dataset [3]

any ”sensible” function can
be approximated this way

approximation property
depends on σ(x)

deep vs. shallow
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Universal approximation property

Cybenko, Hornik, 1990 [2] [4]

If the activation function is not a polynomial, then the family of all shallow
networks (parametrized by (aj , bj , cj)) is dense in Lp(R) and C 0(R).

Width can be arbitrarily large. Several variants have been proved since
then, also for the deep case.

Zhou Lu et al, 2017 [5]

For any Lebesgue-integrable function f : Rn → R and any ε > 0 there
exists a fully-connected ReLU network F having its width d ≤ n + 4 such
that ∫

Rn

∣∣f (x)− F (x)
∣∣ dx < ε

While width is bounded here, depth can be arbitrarily large.
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Universal approximation property

Sonoda, Murata (2015, [8]) ridgelet analysis of shallow networks

universal approximation property proved (again) for several families of
activation functions (in particular ReLU)

nontrivial relation between the weigths of trained network is
discovered; suggested by theory, confirmed by numerical experiments

they claim to find global optimum (no need for backpropagation)

chance to extend theory to cover deep networks (and explain why
they tend to work better in practice than the shallow counterparts)
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Ridgelet analysis

Definition (Murata, [6])

An F : Rm → R is called a ridge function if there exists a G : R→ R
function and a ∈ Rm such that F (x) = G (aT x).

Source: [1]
A ridge is constant along hyperplanes whose normal is parallel to a, i.e. on the
parallel hyperplanes aT x = c , c ∈ R
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Ridgelet transform

Definition [8]

The classical ridgelet transform of an f : Rm → C function w.r.t
τ : R→ C is given by

Rτ f (a, b) :=

∫
Rm

f (x)τ(ax− b)‖a‖s dx

where a ∈ Rm and b ∈ R.

Definition [8]

The dual ridgelet transform of a T : Rm+1 → C function w.r.t τ : R→ C
is given by

R+
τ T (x) :=

∫
Rm+1

T (a, b)τ(ax− b)‖a‖−s da db

where x ∈ Rm.
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Ridgelet transform

The terms ‖a‖−s and ‖a‖s are only for technical reasons.

Definition [8]

Two functions σ and τ said to be admissable if

Kσ,τ := (2π)m−1
∫
R

σ̂(ω)τ̂(ω)

|ω|m
dω

is finite and nonzero.

It can be shown that if f is ”nice enough” and σ and τ are admissable,
then the following reconstruction formula holds ([8])

R+
τ Rσf = Kσ,τ f
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Ridgelet transform

By introducing variables u := a/‖a‖, α := 1/‖a‖, β := b/‖a‖ we have

τu,α,β(x) := τ

(
ux− β
α

)
1

αs

and

Rτ f (u, α, β) :=

∫
Rm

f (x)τu,α,β(x) dx

The name ridgelet comes from τu,α,β(x) as it is constant on (Ru)⊥ and
behaves as a wavelet function on Ru.
It can also be shown that ridgelet transform is actually the application of a
wavelet transform to the slices of the Radon transform.
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Integral representation of NN

The integral representation [7] of this
shallow NN is given by

S [γ](x) :=

∫
Rm×R

γ(a, b)σ(ax−b) dλ(a, b),

where γ ∈ L2(Rm+1).
Informally, this is an infinite weighted sum
of hidden units.
The trick is that we want to examine the
weights of the output layer as a function
of the weights of the previous layer.
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Integral representation of NN

S [γ](x) :=

∫
Rm×R

γ(a, b)σ(ax− b) dλ(a, b),

This is actually the dual ridgelet transform of γ w.r.t σ.
However, results related to classical ridgelet analysis do not cover popular
activation functions, such as the ReLU.
Solution ([8]): defining the ridgelet transform w.r.t distributions:

Rψf (u, α, β) :=

∫
R

Rad(f )(u, αz + β)ψ(z) dz
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Ridgelet transform w.r.t distributions

The dual transform and the admissibility condition can be extended in a
similar manner. Without going into much details (see [8]), the following
holds:

Reconstruction formula

Let f ∈ L1(Rm) satisfying f̂ ∈ L1(Rm) and let (ψ, τ) ∈ S(R)× S
′
0(R),

where S(R) denotes the space of rapidly decreasing functions and S
′
0(R)

denotes the space of so-called Lizorkin distributions (for definition see [8]).
Then the following holds almost everywhere

R+
τ Rψf = K

′
ψ,τ f

where K
′
ψ,τ is defined in a similar manner to Kψ,τ .

This covers ReLU as it belongs to S
′
0(R).

They also show that there exists an l ∈ N such that a suitable
back-projection (dual Radon transform) of the G (l) derivative of the
function G (z) = exp(−z2/2) is admissible with ReLU.
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Example [8]
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Optimum of BP training

We consider an m-in-1-out shallow network with p hidden unit and
activation function σ:

g(x) =

p∑
j=1

cjσ(ajx − bj),

where (aj , bj) ∈ Rm × R are called the hidden parameters and cj ∈ R are
called the output parameters.
Multidimensional output can be handled similarly.
Integral representation again:

S [γ](x) :=

∫
Rm×R

γ(a, b)σ(ax− b) dλ(a, b)
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Optimum of BP training

Above described results suggest that γ should be Rτ f for a suitable τ , i.e.
a particular solution to

S [γ] = f

is given by Rτ f .
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Example [7]
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Example [7]
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Optimum of BP training

BP training is the minimization of

L(θ) = EX |f (X )− g(X , θ)|2 + Ω(θ),

where f is the ground truth function and Ω is a regularizing term.
We reformulate the BP problem as

L(γ) = EX |f (X )− S [γ](X )|2 + Ω(γ)
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Optimum of BP training

Let f ∈ L2(µ) and β > 0, also let Lf ,β(γ) =
∥∥|f − S [γ]|

∥∥2
L2(µ)

+ β‖γ‖2L2(λ).

Theorem [7]

For all such f there exists a ρ admissable function such that

arg min
γ∈L2(λ)

Lf ,β(γ) = Rρ[f ]
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Possible improvements

given an activation function, how to find the ”best” (admissible)
ridgelet function?

besides toy examples, there is no empirical proof that this works in
practice (in progress)

can we extend this to deep networks?

can we say more if we have some restrictions on the input data
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