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Lipschitz continuity

f : (X , dX )→ (Y , dY ) is λ-Lipschitz if

dY (f (x1), f (x2)) ≤ λ · dX (x1, x2)

holds for ∀x1, x2 ∈ X . The smallest such λ is the Lipschitz norm

‖f ‖L = sup
x1,x2∈X ;x1 6=x2

dY (f (x1), f (x2))

dX (x1, x2)
,

which quantifies how much f can dilate distances.



Outline

Why ‖f ‖L matters when f is a neural network, and how to
estimate ‖f ‖L or enforce ‖f ‖L ≤ λ?
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Why?



Wasserstein metric

µ, ν ∈ P(X ) :

π ∈ Π(µ, ν) ⊂ P(X × X )

⇐⇒

∀A ⊂ X : π(A× X ) = µ(A) ∧ π(X × A) = ν(A)

W (µ, ν) = inf
π∈Π(µ,ν)

E(x1,x2)∼πd(x1, x2)

=⇒ (P(X ),W ) is a metric space!



Wasserstein GAN

Kantorovich-Rubinstein:

W (µ, ν) = inf
π∈Π(µ,ν)

E(x1,x2)∼πd(x1, x2) = sup
‖f ‖L≤1

Ex∼µf (x)− Ex∼ν f (x)

Wasserstein GAN [Arjovsky et al., 2017]:

min
θg∈Rm

max
θf ∈Rn,‖f (·,θf )‖L≤1

Ex∼µf (x , θf )− Ez∼ζ f (g(z , θg ), θf )

=⇒ gradient vanishing solved

Non-Wasserstein GANs with ‖f (·, θf )‖L ≤ λ [Zhou et al., 2019]:
=⇒ gradient uninformativeness solved

How to enforce ‖f (·, θf )‖L ≤ λ?



Unconstrained Wasserstein GAN

α > 1 :

W (µ, ν)α = sup
f ∈Lip(X )

Ex∼µf (x)− Ex∼ν f (x)− (α− 1)α
α

1−α ‖f ‖
α

α−1

L

Unconstrained Wasserstein GAN:

min
θg∈Rm

max
θf ∈Rn

Ex∼µf (x , θf )− Ez∼ζ f (g(z , θg ), θf )

− (α− 1)α
α

1−α ‖f (·, θf )‖
α

α−1

L

How to estimate ∇θf ‖f (·, θf )‖L?



Mutual Information

Radon-Nykodim:
µ, ν ∈ P(X )

∀A ⊂ X : ν(A) = 0 =⇒ µ(A) = 0

=⇒

∃dµ
dν

: X → R s.t. ∀A ⊂ X : µ(A) =

∫
A

dµ

dν
dν

Kullback-Leibler:

D(µ‖ν) = Ex∼µ
dµ

dν
(x)

Mutual Information:

I (X ,Y ) = D(µXY ‖µX × µY )



Mutual Information Neural Estimation

Donsker-Varadhan:

D(µ‖ν) = Ex∼µ
dµ

dν
(x) = sup

f ∈B(X )
Ex∼µf (x)− logEx∼νe

f (x)

Mutual information maximization [Belghazi et al., 2018]:

min
θg∈Rm

max
θf ∈Rn

Ex∼µf ((x , g(x , θg )), θf )

− logEx1∼µ,x2∼µe
f ((x1,g(x2,θg )),θf )

Additional Lipschitz constraint ‖f (·, θf )‖L ≤ λ [Ozair et al., 2019]:
=⇒ high sample complexity solved



Moreau-Yosida-Kullback-Leibler divergence

Moreau-Yosida:

Fλ(x) = inf
y
F (y) + λd(x , y)

F : (X , d)→ [0,∞) lsc =⇒ Fλ(x)
λ→∞−−−→ F (x) ∧ ‖Fλ‖L ≤ λ

Applied to (µ→ D(µ‖ν)) : (P(X ),W )→ [0,∞):

Dλ(µ‖ν) := inf
ξ∈P(X )

D(ξ‖ν) + λW (µ, ξ)

= sup
‖f ‖L≤λ

Ex∼µf (x)− logEx∼νe
f (x)

Dλ(µ‖ν)
λ→∞−−−→ D(µ‖ν) ∧ ‖(µ→ Dλ(µ‖ν))‖L ≤ λ



Generalization, robustness, stability

Generalization theory of deep neural networks
[Bartlett et al., 2017, Wei and Ma, 2020]: Lipschitz continuity is a
key component for proving generalization error bounds.

Adversarial robustness [Tsuzuku et al., 2018]: robustness
certificates can be given based on Lipschitz continuity properties.

Model-based reinforcement learning [Asadi et al., 2018]: a
Lipschitz continuous transition function implies a Lipschitz
continuous estimated value function and error bounds for both
value estimation and multi-step prediction.

How to estimate or upper bound ‖f (·, θf )‖L?



How?



Lipschitz regularization

Lipschitz regularization of neural networks divides into two main
approaches.

One is to quantify the violation of the Lipschitz condition to be
enforced by a data-dependent penalty, which is then added to the
training objective.

The other includes normalization techniques for weight matrices
and Lipschitz continuous activation functions, mostly based on the
composition property ‖f2 ◦ f1‖L ≤ ‖f1‖L · ‖f2‖L.



Gradient penalty

Rademacher:

‖f ‖L <∞ =⇒ ‖(x → ‖∇x f (x)‖2)‖∞ = ‖f ‖L

Gradient penalty:

max {‖∇x f (x)‖2 − λ, 0}

Wasserstein GAN with gradient penalty [Gulrajani et al., 2017]:

min
θg∈Rm

max
θf ∈Rn

Ex∼µf (x , θf )− Ez∼ζ f (g(z , θg ), θf )

− ` · Ex∼ρ (max {‖∇x f (x , θf )‖2 − 1, 0})2



Lipschitz penalty

Lipschitz penalty:

max

{
|f (x1)− f (x2)|
‖x1 − x2‖2

− λ, 0
}

Wasserstein GAN with Lipschitz penalty [Petzka et al., 2018]:

min
θg∈Rm

max
θf ∈Rn

Ex∼µf (x , θf )− Ez∼ζ f (g(z , θg ), θf )

− ` · E(x1,x2)∼ρ

(
max

{
|f (x1, θf )− f (x2, θf )|

‖x1 − x2‖2
− 1, 0

})2

=⇒ divergent training



Adversarial Lipschitz penalty

‖f ‖L = sup
d(x ,x+r)>0

{
|f (x)− f (x + r)|

d(x , x + r)

}
Lipschitz adversarial perturbation:

radv (x) = arg max
d(x ,x+r)>0

{
|f (x)− f (x + r)|

d(x , x + r)

}
Adversarial Lipschitz penalty:

max

{
|f (x)− f (x + radv (x))|

‖radv (x)‖2
− λ, 0

}
Wasserstein GAN with adversarial Lipschitz penalty [Terjék, 2020]:

ρ = (x → (x , x + radv (x)))#
1

2
(µ+ g(·, θg )#ζ)

=⇒ convergent training



Approximation of radv(x)

∀x ∈ Rn : r → |f (x)− f (x + r)| : Rn → R

has a global minimum at r = 0, implying that

∇r |f (x)− f (x + r)|(0) = 0,

so the 2nd order Taylor approximation at r = 0 is

|f (x)− f (x + r)| ≈ 1

2
r · Hessr |f (x)− f (x + r)|(0) · rT ,

which is locally maximized by the first eigenvector of the Hessian.
Power iteration with Hessian-vector products converges to the
direction of greatest change in f (x) at x .

radv (x) is then approximated by a random magnitude perturbation
towards this adversarial direction.



Weight clipping

θf ∈ K ⊂ Rn,K compact =⇒ ‖f (·, θf )‖L ≤ λ(K )

Weight clipping [Arjovsky et al., 2017]:

θf ∈ [−c , c]n



Spectral normalization
‖.‖L of affine maps:

(x → M · x + b) : (Rk , ‖.‖2)→ (Rl , ‖.‖2)

=⇒ ‖(x → Mx + b)‖L = σ1(M)

Spectral normalization [Miyato et al., 2018]:

M =
M

σ1(M)

Approximation of σ1(M):

vi+1 =
1

‖MTui‖2
MTui , ui+1 =

1

‖Mvi+1‖2
Mvi+1

σ1(M) ≈ uTMv



Gradient norm preservation

Gradient norm attenuation:
‖f ‖L = 1 =⇒ backpropagating a gradient through f can only
decrease its norm, potentially resulting in nonlinear capacity being
underused.

Gradient norm preserving architectures [Anil et al., 2019]:
Orthogonal weight matrices with GroupSort activations =⇒
universal approximation of 1-Lipschitz functions.

Spectrally normalized ReLU NNs with GNP property are linear.



Orthogonalization

Orthogonality does not sacrifice capacity [Anil et al., 2019]:

Spectrally normalized layers can be replaced by layers with
σ1(M) = · · · = σk(M) = 1, resulting in an equivalent NN =⇒
orthogonalization effectively reduces the hypothesis space.



Lipschitz constant estimation

Exact computation of ‖f (·, θf )‖L is NP-hard
[Virmaux and Scaman, 2018, Jordan and Dimakis, 2020]

POP for upper bounds [Gómez et al., 2020]

Hierarchies of SDPs for increasingly tight upper bounds
[Fazlyab et al., 2019, Chen et al., 2020]

MIP for exact computation, upper bounds if stopped early
[Jordan and Dimakis, 2020]
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