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I. ENERGY MANAGEMENT

FORECASTING THE ENERGY FLOW FOR
RoBUST CONTROL IN E+GRID
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Project: E4Grid
— Public lighting microgrid with partners: GE (General Electric),

BME (Budapest University of Technology and Economics),
MFA (Institute for Technical Physics and Materials Science)
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Chance-Constrained Model Predictive Control

minimize E[JJ(x)] = E

mell

n—1
>l Uk+1)]

k=0
subject to  xo = xg,
uk = i (Xk—1)
Xk = F(Xk—1, Uk, €k)
P{ueld, xe X} >1-9
k=1,....n
— where x = (xg,...,%n) ", U= (ug,...,un)t, ™= (71,...,7,) are

sequences of states, inputs and policies, respectively; X', U are
constraint sets; and {/x} are R-valued immediate-cost functions.

— Furthermore, € = (e1,...,&p) is a sequence of uncertainties, and
(constant) ¢ is the allowed probability of constraint violation.
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Modeling the Energy Balance

— To generate forecasts ( “scenarios” ), we model the energy balance,
i.e., the difference of the energy production and the consumption.

— Let {&+} be the quasi-periodic energy balance (time step: 1 hour),
{v¢} are side information, like clear sky data or historical averages.

— We can model the energy balance by NARX models, that is
&t = g(Et—la -y Et—p, Vt) + ng,
where n; is the process noise at time t, and p is the order.

— Function g is realized by an SVR or an MLP (nonlinear) model.
— Another possible model is BJ (Box-Jenkins) that takes the form:

er = F1(q)B(q) ve + D"*(q)C(q) ne.

where B, C, D, F are finite polynomials in g=! (backward shift).
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Generating Trajectories

— The noise is estimated by its EDF and resampled by bootstrap.

— The figure shows generating trajectories by BJ (bootstraped noise).
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Adaptive Forecast Aggregation

State Dependent Average Forecaster (SDAF)

n
> exp(—n Ki t—1(st)) Xi ¢
i=1

ﬁt(st) =

éeXP(—ﬂ Ki,t—l(St))

Xit : forecast of expert i, Kj¢_1 : similarity based loss; s; : state

A new forecasting approach was designed based on the framework
of prediction with expert advice.

SDAF utilizes side information through similarity kernels.

It was used to aggregate forecasts of time-series models.

Main advantage: better adaptation to changing environments.
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Performance Evaluation

Time-Series Model Production: Loss Consumption: Loss
Name ‘ Side Info Estimation ‘ Validation Estimation Validation
FIR + 16.92 13.94 27.15 30.18
AR - 6.27 7.78 13.67 21.38
ARX + 5.51 7.07 10.16 25.76
ARMA - 5.68 7.81 16.53 22.09

BJ + 5.15 7.06 9.17 18.31
STATE + 5.21 6.96 9.28 26.28
HW + 10.68 14.46 23.28 30.15
WAVE + 4.21 9.29 6.95 20.07
MLP - 5.24 9.83 13.64 25.04
MLPX + 4.02 8.58 9.61 19.84
SVR - 6.45 7.38 11.23 20.15
SVRX + 6.37 7.18 5.37 16.43
Aggregation Method Loss ( Regret) Loss (Regret)
EWAF - 4.93 (0.91) | 6.89 (-0.07) || 8.08 (2.71) [ 14.91 (-1.52)
SDAF + 4.32 (0.30) | 6.75 (-0.21) || 5.43 (0.06) | 14.59 (-1.84)
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Predicting with Aggregated Forecasters
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II. ENVIRONMENTAL
MONITORING

STATISTICAL INFERENCE IN WIRELESS
SENSOR NETWORKS FOR SMART CITIES
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Overview of the Prototype System
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Measured Stressors

Default Sampling interval
Stressor unit minimum | maximum
particulate matter g/md 10 min 60 min
environmental temperature °C 1 min 5 min
ultraviolet irradiation (B) index 10 min 30 min
ambient light lux 10 min 30 min
air pressure mbar 1 min 5 min
relative humidity % 1 min 5 min
carbon monoxide ppm 30 min 60 min
noise (histogram) dBA 1 min 15 min
speed (X, y, z; histogram) km /h 1 min 15 min
vibratory acceleration (x, y, z) mG 1 min 10 min
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Aim: Extrapolation with Reliability Estimates
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Extrapolation in Time and Space

— The main steps of pre-processing the measurements were

o Filtering outliers (Hampel type filters were applied)
Discretization (to have a discrete-time process)
Standardization (centering and normalization)

Missing information (were estimated with a preliminary model)
Smoothing (removes high- and low- frequency disturbances)
Typical values (to help dealing with quasi-periodic signals)
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— Then, ARX and SVR type time-series models were estimated.

— The process noise was estimated by the EDF of the residuals.

— With the process and noise models trajectories were generated.

— From these, the forecast and reliability estimates were calculated.

— The data was also extrapolated in space (not only in time) as
smoothed maps with reliability estimates were constructed, as well.
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- __________________________________________________________________________________________
One-Step Predictions of Particle Dust with SVR
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Monte Carlo Simulations of Dust Levels
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Forecast and Prediction Regions for Dust Levels

4900 —
forecast

+++ 98% UCB

4850 — 98% LCB

95% UCB
95% LCB

90% UCB
4800 [~

er 90%LCB

4750
4700
4650

4600

", .+
C——

4550 [~

Energy Management and Env. Mol



Smoothed Map using Exponential Distance Metric
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Thank you for your attention!
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