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I. Energy Management
Forecasting the Energy Flow for

Robust Control in E+Grid
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Project: E+Grid

– Public lighting microgrid with partners: GE (General Electric),
BME (Budapest University of Technology and Economics),
MFA (Institute for Technical Physics and Materials Science)
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Chance-Constrained Model Predictive Control

minimize
π∈Π

E
[
Jπn (x0)

]
= E

[
n−1∑
k=0

`k(xk , uk+1)

]
subject to x0 = x∗t0

uk = πk(xk−1)

xk = f (xk−1, uk , εk)

Pε{u ∈ U , x ∈ X} ≥ 1− δ
k = 1, . . . , n

– where x
.

= (x0, . . . , xn)T, u
.

= (u0, . . . , un)T, π
.

= (π1, . . . , πn) are
sequences of states, inputs and policies, respectively; X , U are
constraint sets; and {`k} are R-valued immediate-cost functions.

– Furthermore, ε
.

= (ε1, . . . , εn) is a sequence of uncertainties, and
(constant) δ is the allowed probability of constraint violation.
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Modeling the Energy Balance

– To generate forecasts (“scenarios”), we model the energy balance,
i.e., the difference of the energy production and the consumption.

– Let {εt} be the quasi-periodic energy balance (time step: 1 hour),
{vt} are side information, like clear sky data or historical averages.

– We can model the energy balance by NARX models, that is

εt = g(εt−1, . . . , εt−p, vt) + nt ,

where nt is the process noise at time t, and p is the order.

– Function g is realized by an SVR or an MLP (nonlinear) model.

– Another possible model is BJ (Box-Jenkins) that takes the form:

εt = F−1(q)B(q) vt + D−1(q)C (q) nt ,

where B,C ,D,F are finite polynomials in q−1 (backward shift).

Balázs Csanád Csáji Energy Management and Env. Monitoring | 5



Generating Trajectories

– The noise is estimated by its EDF and resampled by bootstrap.

– The figure shows generating trajectories by BJ (bootstraped noise).
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Adaptive Forecast Aggregation

State Dependent Average Forecaster (SDAF)

p̂t(st) =

n∑
i=1

exp(−ηKi ,t−1(st)) x̂i ,t

n∑
i=1

exp(−ηKi ,t−1(st))

x̂i ,t : forecast of expert i , Ki ,t−1 : similarity based loss; st : state

– A new forecasting approach was designed based on the framework
of prediction with expert advice.

– SDAF utilizes side information through similarity kernels.

– It was used to aggregate forecasts of time-series models.

– Main advantage: better adaptation to changing environments.
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Performance Evaluation

Time-Series Model Production: Loss Consumption: Loss

Name Side Info Estimation Validation Estimation Validation

FIR + 16.92 13.94 27.15 30.18

AR – 6.27 7.78 13.67 21.38

ARX + 5.51 7.07 10.16 25.76

ARMA – 5.68 7.81 16.53 22.09

BJ + 5.15 7.06 9.17 18.31

STATE + 5.21 6.96 9.28 26.28

HW + 10.68 14.46 23.28 30.15

WAVE + 4.21 9.29 6.95 20.07

MLP – 5.24 9.83 13.64 25.04

MLPX + 4.02 8.58 9.61 19.84

SVR – 6.45 7.38 11.23 20.15

SVRX + 6.37 7.18 5.37 16.43

Aggregation Method Loss ( Regret ) Loss ( Regret )

EWAF – 4.93 (0.91) 6.89 (-0.07) 8.08 (2.71) 14.91 (-1.52)

SDAF + 4.32 (0.30) 6.75 (-0.21) 5.43 (0.06) 14.59 (-1.84)
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Predicting with Aggregated Forecasters
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II. Environmental
Monitoring

Statistical Inference in Wireless

Sensor Networks for Smart Cities
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Overview of the Prototype System
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Measured Stressors

Default Sampling interval

Stressor unit minimum maximum

particulate matter g / m3 10 min 60 min

environmental temperature °C 1 min 5 min

ultraviolet irradiation (B) index 10 min 30 min

ambient light lux 10 min 30 min

air pressure mbar 1 min 5 min

relative humidity % 1 min 5 min

carbon monoxide ppm 30 min 60 min

noise (histogram) dBA 1 min 15 min

speed (x, y, z; histogram) km / h 1 min 15 min

vibratory acceleration (x, y, z) mG 1 min 10 min
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Aim: Extrapolation with Reliability Estimates
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Extrapolation in Time and Space

– The main steps of pre-processing the measurements were

◦ Filtering outliers (Hampel type filters were applied)
◦ Discretization (to have a discrete-time process)
◦ Standardization (centering and normalization)
◦ Missing information (were estimated with a preliminary model)
◦ Smoothing (removes high- and low- frequency disturbances)
◦ Typical values (to help dealing with quasi-periodic signals)

– Then, ARX and SVR type time-series models were estimated.

– The process noise was estimated by the EDF of the residuals.

– With the process and noise models trajectories were generated.

– From these, the forecast and reliability estimates were calculated.

– The data was also extrapolated in space (not only in time) as
smoothed maps with reliability estimates were constructed, as well.
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One-Step Predictions of Particle Dust with SVR
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Monte Carlo Simulations of Dust Levels
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Forecast and Prediction Regions for Dust Levels
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Smoothed Map using Exponential Distance Metric
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Thank you for your attention!

Í www.sztaki.hu/~csaji
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