Intelligent solutions for energy management and environmental monitoring

Balázs Csanád Csáji, András Kovács, József Váncza Computer and Automation Research Institute (SZTAKI)

csaji@sztaki.hu, akovacs@sztaki.hu, vancza@sztaki.hu

Artificial Intelligence National Laboratory, IOT Webinar December 4, 2020

Motivation

- Changing grid environment
 - Generation less controllable (renewables)
 - Consumers more controllable (EVs, ICT)
 - Need for demand response management
 - Power systems & street lighting as infrastructure for smart city services
 - Plethora of challenges for AI

- E+grid: intelligent energy-positive street lighting system
 - Intelligent: lighting according to traffic and environmental conditions
 - Energy-positive: produces more energy than it consumes in a year
 - Consortium: GE Hungary, BME, MFA, SZTAKI

Prototype system configuration

- 191 intelligent LED luminaries with motion sensors (6,4 kW)
- Roof-mounted PV panels (21 kWp total)
 - KORAX monocrystalline (3.50 kWp)
 - SHARP thin-film (3.46 kWp)
 - TrinaSolar polycrystalline (13.51 kWp)

- Battery storage (18 kWh total)
- Hopecke lead-acid (8 kWh)
- Akasol Li-ion (5.5 kWh)
- Shaft Li-ion (5 kWh)
- At a research campus of the Academy
 - Since 2014

Central controller

Software application running in computational cloud

- Monitoring and controlling the lighting system
- Visualization and basic data analysis, smart city services
- Optimizing the energy flow

Energy management in E+grid

- Minimizing cost of energy (maximizing profit)
 - Subject to a time-of-use variable energy tariff
 - Directly controlling battery charge and discharge
 - Ensure sufficient battery charge to bridge a 3-hours blackout with given certainty
- Dynamic time series for predicting energy production & consumption
- Linear ARX (live system)
- Adaptive aggregation of time series (research)
- Robust optimization approach
 - Linear program (live system)
 - Stochastic model-predictive control (research)

Kovács, A.; Bátai, R.; Csáji, B.Cs.; Dudás, P.; Háy, B.; Pedone, G.; Révész, T.; Váncza, J.: Intelligent control for energy-positive street lighting. Energy, 114:40-51, 2016.

Bilevel tariff optimization for demand response management

- Stackelberg game model
- Electricity retailer (leader in game)
 - Computes day-ahead time-varying electricity tariff, with hourly resolution
 - Objective: maximizing profit

- Consumers (multiple followers in game)
- Classified into consumer groups with similar profiles
- Respond to tariff by scheduling controllable loads and battery (dis)charge
- Objective: min. cost of electricity & max. utility
- Assumption: retailer knows perfectly the decision model of consumers

Bilevel tariff optimization: mathematical formulation

Kovács, A.: Bilevel programming approach to demand response management with day-ahead tariff. Journal of Modern Power System and Clean Energy, 7(6), 1632-1643, 2019.

Bringing the bilevel approach closer to reality

- Crucial assumptions in the game theoretical model
 - Leader has perfect information about the followers' problems
 - Follower selects the optimal solution most favorable for the leader
 - Current research focuses on relaxing these assumptions
- Estimating followers' model parameters from past behavior
- Challenge: dependency of consumption on electricity tariff
- Inverse optimization approach to parameter estimation
- Consumer behavior can be reliably predicted based on noisy historic samples
- Robust optimization approaches

8

- Safeguard the leader from followers selecting a different optimal response: "Pessimistic" bilevel formulation
- Robust bilevel optimization with followers' parameter in an uncertainty set

Kis, T.; Kovács, A.; Mészáros, Cs.: On optimistic and pessimistic cases of bilevel electricity tariff optimization. Applied Energy, submitted paper, 2020.

Kovács, A.: Inverse optimization approach to the identification of electricity consumer models. Central European Journal of Operations Research, in print, 2020.