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§ Complete and incomplete verification
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WHY DO WE NEED CERTIFIED 
ROBUSTNESS?
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“Arms race”

§ practitioners design new ways of hardening classifiers against existing
attacks, and then a new class of attacks is developed that can penetrate
this defense

§ Distillation (Papernot et al., 2016) -> Broken: Carlini & Wagner, 2017
§ Rotation and scaling (Lu et al., 2017) -> Borken: Athalye, 2017
§ ...
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Ad-supported	economic	model	of	the	Web	
is	under	threat	today!
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“Arms race”

§ The lesson has been learnt from crypto…

§ Design classifiers that are guaranteed to be robust to adversarial
perturbations!!!
– even if the attacker is given full knowledge of the classifier
– any weaker attempt of “security through obscurity” could ultimately prove

unable to provide a robust classifier
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What is robustness?

§ f is robust to adversarial examples if its output is insensitive to 
small changes to any plausible input that may be encountered in 
deployment
– model robustness is typically assessed on inputs from a test set that are 

not used in model training 

§ Problems:
1. How to verify that an already trained model is robust?
2. How to train a model so that it becomes robust?
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Problem of Verification
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§ Find the largest “neighborhood” of a sample x such that all 
neighboring samples within this neighborhood has the same
prediction
– neighboring samples are visually similar
– a robustness verification program A gives a guarantee that no adversarial

examples exist within a certain radius of x

Machine 
learning
model f
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Problem of Robust Training

§ How to train a model so that it becomes robust?
– a model is robust to adversarial examples if its output is insensitive to 

small changes to any plausible input that may be encountered in 
deployment

– model robustness is typically assessed on inputs from a test set that are 
not used in model training 
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What do we mean by neighborhood?

§ P-norm ball or radius r:

§ p = 0: changes are concentrated on a few pixels
§ p > 1: change may spread out over many or all features

– more powerful, as they can remain invisible  
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Bp(r) := {� 2 Rn : ||�||p  r}

‟L2 neighborhood” with ! = 0.1Original input
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What do we mean by neighborhood?
§ p-norm ball or radius r:

§ An attacker can craft a successful adversarial example for a given
p-norm if they find ! ∈ #$ % such that & ' ≠ & ' + !
– an adversary can find perturbation ! so small that ' + ! looks just like x to 

the human eye, yet the network classifies ' + ! as a different, incorrect 
class
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Bp(r) := {� 2 Rn : ||�||p  r}

Original input x ' + !*
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Robustness, once again …

§ Definition: 
f is R-robust at x, if for any ! ∈ #$(&), ( ) = (() + !)
– f is constant around R-sized “neighborhood” of input x

§ Robustness verification
– Is f R-robust at x?

§ Robust training
– f is guaranteed to be (provably) R-robust no matter what x is
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Verification: it is hard…

§ Complete verifiers reason about the exact polytope
– Slow, (may not terminate in reasonable time) but gives definite answer (if it

terminates)
§ Incomplete verifiers bound the adversarial polytope

– More scalable, but provide only approximations (false negatives may occur)
13

Provable Defenses via the Convex Outer Adversarial Polytope
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Figure 1. Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound.

the loss function.1 Madry et al. (2017) revisited this connec-
tion to robust optimization, and noted that simply solving
the (non-convex) min-max formulation of the robust opti-
mization problem works very well in practice to find and
then optimize against adversarial examples. Our work can
be seen as taking the next step in this connection between
adversarial examples and robust optimization. Because we
consider a convex relaxation of the adversarial polytope, we
can incorporate the theory from convex robust optimization
and provide provable bounds on the potential adversarial
error and loss of a classifier, using the specific form of dual
solutions of the optimization problem in question without
relying on any traditional optimization solver.

3. Training Provably Robust Classifiers
This section contains the main methodological contribution
of our paper: a method for training deep ReLU networks
that are provably robust to norm-bounded perturbations. Our
derivation roughly follows three steps: first, we define the
adversarial polytope for deep ReLU networks, and present
our convex outer bound; second, we show how we can ef-
ficiently optimize over this bound by considering the dual
problem of the associated linear program, and illustrate how
to find solutions to this dual problem using a single modi-
fied backward pass in the original network; third, we show
how to incrementally compute the necessary elementwise
upper and lower activation bounds, using this dual approach.
After presenting this algorithm, we then summarize how the
method is applied to train provably robust classifiers, and
how it can be used to detect potential adversarial attacks on
previously unseen examples.

3.1. Outer Bounds on the Adversarial Polytope

In this paper we consider a k layer feedforward ReLU-based
neural network, f✓ : R|x| ! R|y| given by the equations

ẑi+1 = Wizi + bi, for i = 1, . . . , k � 1

zi = max{ẑi, 0}, for i = 2, . . . , k � 1
(1)

with z1 ⌘ x and f✓(x) ⌘ ẑk (the logits input to the clas-
sifier). We use ✓ = {Wi, bi}i=1,...,k to denote the set of
all parameters of the network, where Wi represents a linear
operator such as matrix multiply or convolution.

1This fact is well-known in robust optimization, and we merely
mean that the original paper pointed out this connection.

Figure 2. Illustration of the convex ReLU relaxation over the
bounded set [`, u].

We use the set Z✏(x) to denote the adversarial polytope, or
the set of all final-layer activations attainable by perturbing
x by some � with `1 norm bounded by ✏:2

Z✏(x) = {f✓(x+�) : k�k1  ✏}. (2)

For multi-layer networks, Z✏(x) is a non-convex set (it
can be represented exactly via an integer program as in
(Lomuscio & Maganti, 2017) or via SMT constraints (Katz
et al., 2017)), so cannot easily be optimized over.

The foundation of our approach will be to construct a convex
outer bound on this adversarial polytope, as illustrated in
Figure 1. If no point within this outer approximation exists
that will change the class prediction of an example, then we
are also guaranteed that no point within the true adversarial
polytope can change its prediction either, i.e., the point is ro-
bust to adversarial attacks. Our eventual approach will be to
train a network to optimize the worst case loss over this con-
vex outer bound, effectively applying robust optimization
techniques despite non-linearity of the classifier.

The starting point of our convex outer bound is a linear re-
laxation of the ReLU activations. Specifically, given known
lower and upper bounds `, u for the pre-ReLU activations,
we can replace the ReLU equalities z = max{0, ẑ} from
(1) with their upper convex envelopes,

z � 0, z � ẑ, �uẑ + (u� `)z  �u`. (3)

The procedure is illustrated in Figure 2, and we note that if
` and u are both positive or both negative, the relaxation is
exact. The same relaxation at the activation level was used
in Ehlers (2017), however as a sub-step for exact (combina-
torial) verification of networks, and the method for actually
computing the crucial bounds ` and u is different. We denote
this outer bound on the adversarial polytope from replacing
the ReLU constraints as Z̃✏(x).

2For the sake of concreteness, we will focus on the `1 bound
during this exposition, but the method does extend to other norm
balls, which we will highlight shortly.

Do all points in this polytope
have the same prediction?

This is an NP-hard problem!

! " = Panda?

! " + % = Panda?

"" + %

!
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Examples for incomplete (but sound) verifiers
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Figure 1. Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound.
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the (non-convex) min-max formulation of the robust opti-
mization problem works very well in practice to find and
then optimize against adversarial examples. Our work can
be seen as taking the next step in this connection between
adversarial examples and robust optimization. Because we
consider a convex relaxation of the adversarial polytope, we
can incorporate the theory from convex robust optimization
and provide provable bounds on the potential adversarial
error and loss of a classifier, using the specific form of dual
solutions of the optimization problem in question without
relying on any traditional optimization solver.

3. Training Provably Robust Classifiers
This section contains the main methodological contribution
of our paper: a method for training deep ReLU networks
that are provably robust to norm-bounded perturbations. Our
derivation roughly follows three steps: first, we define the
adversarial polytope for deep ReLU networks, and present
our convex outer bound; second, we show how we can ef-
ficiently optimize over this bound by considering the dual
problem of the associated linear program, and illustrate how
to find solutions to this dual problem using a single modi-
fied backward pass in the original network; third, we show
how to incrementally compute the necessary elementwise
upper and lower activation bounds, using this dual approach.
After presenting this algorithm, we then summarize how the
method is applied to train provably robust classifiers, and
how it can be used to detect potential adversarial attacks on
previously unseen examples.

3.1. Outer Bounds on the Adversarial Polytope

In this paper we consider a k layer feedforward ReLU-based
neural network, f✓ : R|x| ! R|y| given by the equations

ẑi+1 = Wizi + bi, for i = 1, . . . , k � 1

zi = max{ẑi, 0}, for i = 2, . . . , k � 1
(1)

with z1 ⌘ x and f✓(x) ⌘ ẑk (the logits input to the clas-
sifier). We use ✓ = {Wi, bi}i=1,...,k to denote the set of
all parameters of the network, where Wi represents a linear
operator such as matrix multiply or convolution.

1This fact is well-known in robust optimization, and we merely
mean that the original paper pointed out this connection.

Figure 2. Illustration of the convex ReLU relaxation over the
bounded set [`, u].

We use the set Z✏(x) to denote the adversarial polytope, or
the set of all final-layer activations attainable by perturbing
x by some � with `1 norm bounded by ✏:2

Z✏(x) = {f✓(x+�) : k�k1  ✏}. (2)

For multi-layer networks, Z✏(x) is a non-convex set (it
can be represented exactly via an integer program as in
(Lomuscio & Maganti, 2017) or via SMT constraints (Katz
et al., 2017)), so cannot easily be optimized over.

The foundation of our approach will be to construct a convex
outer bound on this adversarial polytope, as illustrated in
Figure 1. If no point within this outer approximation exists
that will change the class prediction of an example, then we
are also guaranteed that no point within the true adversarial
polytope can change its prediction either, i.e., the point is ro-
bust to adversarial attacks. Our eventual approach will be to
train a network to optimize the worst case loss over this con-
vex outer bound, effectively applying robust optimization
techniques despite non-linearity of the classifier.

The starting point of our convex outer bound is a linear re-
laxation of the ReLU activations. Specifically, given known
lower and upper bounds `, u for the pre-ReLU activations,
we can replace the ReLU equalities z = max{0, ẑ} from
(1) with their upper convex envelopes,

z � 0, z � ẑ, �uẑ + (u� `)z  �u`. (3)

The procedure is illustrated in Figure 2, and we note that if
` and u are both positive or both negative, the relaxation is
exact. The same relaxation at the activation level was used
in Ehlers (2017), however as a sub-step for exact (combina-
torial) verification of networks, and the method for actually
computing the crucial bounds ` and u is different. We denote
this outer bound on the adversarial polytope from replacing
the ReLU constraints as Z̃✏(x).

2For the sake of concreteness, we will focus on the `1 bound
during this exposition, but the method does extend to other norm
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Fig. 7: Illustration of how AI2 overapproximates neural network states. Blue circles show the concrete values, while green
zonotopes show the abstract elements. The gray box shows the steps in one application of the ReLU transformer (ReLU1).

Fig. 7, which shows a simple network that manipulates two-
dimensional vectors using a single fully connected layer of the
form f(x) = ReLU2

(
ReLU1

((
2 −1
0 1

)
· x

))
. Recall that

ReLUi(x) = case (xi ≥ 0) : x,
case (xi < 0) : Ii←0 · x,

where Ii←0 is the identity matrix with the ith row replaced
by the zero vector. We overapproximate the network behavior
on an abstract input. The input can be obtained directly (see
Sec. IV-B) or by abstracting a set of concrete inputs to an
abstract element (using the abstraction function α). For our
example, we use the concrete inputs (the blue points) from
Fig 6. Those concrete inputs are abstracted to the green
zonotope z0 : [−1, 1]3 → R2, given as:

z0(ε1, ε2, ε3) = (1 + 0.5 · ε1 + 0.5 · ε2, 2 + 0.5 · ε1 + 0.5 · ε3).
Due to abstraction, more (spurious) points may be added. In
this example, except the blue points, the entire area of the
zonotope is spurious. We then apply abstract transformers
to the abstract input. Note that, if a function f can be
written as f = f ′′ ◦ f ′, the concrete transformer for f is
Tf = Tf ′′ ◦ Tf ′ . Similarly, given abstract transformers T#

f ′

and T#
f ′′ , an abstract transformer for f is T#

f ′′ ◦ T#
f ′ . When

a neural network N = f ′! ◦ · · · ◦ f ′1 is a composition of
multiple CAT functions f ′i of the shape f ′i(x) = W · x+ b or
fi(x) = case E1 : f1(x), . . . , case Ek : fk(x), we only have
to define abstract transformers for these two kinds of functions.
We then obtain the abstract transformer T#

N = T#
f ′
!
◦ · · · ◦T#

f ′
1
.

Abstracting Affine Functions. To abstract functions of the
form f(x) = W · x + b, we assume that the underlying ab-
stract domain supports the operator Aff that overapproximates
such functions. We note that for Zonotope and Polyhedra,
this operation is supported and exact. Fig. 7 demonstrates
Aff as the first step taken for overapproximating the effect
of the fully connected layer. Here, the resulting zonotope
z1 : [−1, 1]3 → R2 is:
z1(ε1, ε2, ε3) =

(2 · (1 + 0.5 · ε1 + 0.5 · ε2)− (2 + 0.5 · ε1 + 0.5 · ε3),
2 + 0.5 · ε1 + 0.5 · ε3) =

(0.5 · ε1 + ε2 − 0.5 · ε3, 2 + 0.5 · ε1 + 0.5 · ε3).

Abstracting Case Functions. To abstract functions of the
form f(x) = case E1 : f1(x), . . . , case Ek : fk(x), we first
split the abstract element a into the different cases (each
defined by one of the expressions Ei), resulting in k abstract
elements a1, . . . , ak. We then compute the result of T#

fi
(ai)

for each ai. Finally, we unify the results to a single abstract
element. To split and unify, we assume two standard operators
for abstract domains: (1) meet with a conjunction of linear
constraints and (2) join. The meet (") operator is an abstract
transformer for set intersection: for an inequality expression
E from Fig. 3, γn(a) ∩ {x ∈ Rn | x |= E} ⊆ γn(a " E).
The join ($) operator is an abstract transformer for set union:
γn(a1) ∪ γn(a2) ⊆ γn(a1 $ a2). We further assume that
the abstract domain contains an element ⊥, which satisfies
γn(⊥) = {}, ⊥ " E = ⊥ and a $ ⊥ = a for a ∈ A.

For our example in Fig. 7, abstract interpretation continues
on z1 using the meet and join operators. To compute the effect
of ReLU1, z1 is split into two zonotopes z2 = z1 " (x1 ≥ 0)
and z3 = z1" (x1 < 0). One way to compute a meet between
a zonotope and a linear constraint is to modify the intervals
of the error terms (see [11]). In our example, the resulting
zonotopes are z2 : [−1, 1] × [0, 1] × [−1, 1] → R2 such that
z2(ε) = z1(ε) and z3 : [−1, 1]× [−1, 0]× [−1, 1]→ R2 such
that z3(ε) = z1(ε) for ε̄ common to their respective domains.
Note that both z2 and z3 contain small spurious areas, because
the intersections of the respective linear constraints with z1 are
not zonotopes. Therefore, they cannot be captured exactly by
the domain. Here, the meet operator " overapproximates set
intersection ∩ to get a sound, but not perfectly precise, result.

Then, the two cases of ReLU1 are processed separately. We
apply the abstract transformer of f1(x) = x to z2 and we
apply the abstract transformer of f2(x) = I0←0 · x to z3. The
resulting zonotopes are z4 = z2 and z5 : [−1, 1]2 → R2 such
that z5(ε1, ε3) = (0, 2+0.5·ε1+0.5·ε3). These are then joined
to obtain a single zonotope z6. Since z5 is contained in z4,
we get z6 = z4 (of course, this need not always be the case).
Then, z6 is passed to ReLU2. Because z6"(x1 < 0) = ⊥, this
results in z7 = z6. Finally, γ2(z7) is our overapproximation of
the network outputs for our initial set of points. The abstract
element z7 is a finite representation of this infinite set.
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Robust training with convex approximations

§ Replace each training sample with its « worst » neighbor, then
train the network with this new training data

§ Computing the worst-case neighbor is hard, hence they bound f
with a convex function

15
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Summary

§ Complete verifiers work only on very small networks
– due to NP-hard nature of the underlying problem

§ Incomplete verifiers (or training) work only on neural networks 
with ReLU activation functions

Is there a method for any kind of neural networks that is also
scalable?

16
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Randomized smoothing: Overview
§ Train the classifier f with the samples corrupted by some noise 

with variance !
§ In the testing phase, return the class which f is most likely to 

return when x is corrupted by Gaussian noise with variance !

18

Corruption with Gaussian noise ! = 0.5Original input

98 % panda, 2 % ostrich

Panda!!!
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Randomized smoothing: Provably robust

§ This classifier is provably robust!
– it has the same prediction around any input sample x within a !"-radius 

of # ⋅ Φ&'()'), where )' is the probability of the most confident class at 
sample x (0.98 for panda above)

19

Corruption with Gaussian noise # = 0.5Original input
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Randomized smoothing: details

§ transforms any arbitrary base classifier f into a new “smoothed
classifier” g that is certifiably robust in l2-norm 

§ g(x) returns the most probable prediction by f of random
Gaussian corruptions of x 

20

Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen
1

Elan Rosenfeld
1
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Abstract

We show how to turn any classifier that classifies
well under Gaussian noise into a new classifier
that is certifiably robust to adversarial perturba-
tions under the `2 norm. While this “randomized
smoothing” technique has been proposed before
in the literature, we are the first to provide a tight
analysis, which establishes a close connection
between `2 robustness and Gaussian noise. We
use the technique to train an ImageNet classifier
with e.g. a certified top-1 accuracy of 49% un-
der adversarial perturbations with `2 norm less
than 0.5 (=127/255). Smoothing is the only ap-
proach to certifiably robust classification which
has been shown feasible on full-resolution Im-
ageNet. On smaller-scale datasets where com-
peting approaches to certified `2 robustness are
viable, smoothing delivers higher certified accura-
cies. The empirical success of the approach sug-
gests that provable methods based on randomiza-
tion at prediction time are a promising direction
for future research into adversarially robust classi-
fication. Code and models are available at http:
//github.com/locuslab/smoothing.

1. Introduction

Modern image classifiers achieve high accuracy on i.i.d.
test sets but are not robust to small, adversarially-chosen
perturbations of their inputs (Szegedy et al., 2014; Biggio
et al., 2013). Given an image x correctly classified by, say,
a neural network, an adversary can usually engineer an ad-
versarial perturbation � so small that x + � looks just like
x to the human eye, yet the network classifies x + � as a
different, incorrect class. Many works have proposed heuris-
tic methods for training classifiers intended to be robust to
adversarial perturbations. However, most of these heuristics
have been subsequently shown to fail against suitably pow-

1Carnegie Mellon University 2Bosch Center for AI. Correspon-
dence to: Jeremy Cohen <jeremycohen@cmu.edu>.

Proceedings of the 36 th
International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).
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Figure 1. Evaluating the smoothed classifier at an input x. Left:
the decision regions of the base classifier f are drawn in differ-
ent colors. The dotted lines are the level sets of the distribution
N (x,�2I). Right: the distribution f(N (x,�2I)). As discussed
below, pA is a lower bound on the probability of the top class and
pB is an upper bound on the probability of each other class. Here,
g(x) is “blue.”

.

erful adversaries (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018). In response, a line of work on
certifiable robustness studies classifiers whose prediction at
any point x is verifiably constant within some set around x
(e.g. Wong & Kolter, 2018; Raghunathan et al., 2018a). In
most of these works, the robust classifier takes the form of a
neural network. Unfortunately, all existing approaches for
certifying the robustness of neural networks have trouble
scaling to networks that are large and expressive enough to
solve problems like ImageNet.

One workaround is to look for robust classifiers that are not
neural networks. In this paper, we analyze an operation we
call randomized smoothing

1 which transforms any arbitrary
base classifier f into a new “smoothed classifier” g that is
certifiably robust in `2 norm. Let f be an arbitrary classifier
which maps inputs Rd to classes Y . For any input x, the
smoothed classifier’s prediction g(x) is defined to be the
class which f is most likely to classify the random vari-
able N (x,�2I) as. That is, g(x) returns the most probable
prediction by f of random Gaussian corruptions of x.

If the base classifier f is most likely to classify N (x,�2I)
as x’s correct class, then the smoothed classifier g will be

1We adopt this term because it has been used to describe as
similar technique in a different context (Duchi et al., 2012).

Certified Adversarial Robustness via Randomized Smoothing

to return when x is perturbed by isotropic Gaussian noise:

g(x) = argmax
c2Y

P(f(x+ ") = c) (1)

where " ⇠ N (0,�2I)

An equivalent definition is that g(x) returns the class c
whose pre-image {x0 2 Rd : f(x0) = c} has the largest
probability measure under the distribution N (x,�2I). The
noise level � is a hyperparameter of the smoothed classifier
g which controls a robustness/accuracy tradeoff; it does not
change with the input x. We leave undefined the behavior
of g when the argmax is not unique.

We will first present our robustness guarantee for the
smoothed classifier g. Then, since it is not possible to
exactly evaluate the prediction of g at x or to certify the ro-
bustness of g around x, we will give Monte Carlo algorithms
for both tasks that succeed with arbitrarily high probability.

3.1. Robustness guarantee

Suppose that when the base classifier f classifies N (x,�2I),
the most probable class cA is returned with probability pA,
and the “runner-up” class is returned with probability pB .
Our main result is that smoothed classifier g is robust around
x within the `2 radius R = �

2 (�
�1(pA)���1(pB)), where

��1 is the inverse of the standard Gaussian CDF. This result
also holds if we replace pA with a lower bound pA and we
replace pB with an upper bound pB .

Theorem 1. Let f : Rd ! Y be any deterministic or

random function, and let " ⇠ N (0,�2I). Let g be defined

as in (1). Suppose cA 2 Y and pA, pB 2 [0, 1] satisfy:

P(f(x+ ") = cA) � pA � pB � max
c 6=cA

P(f(x+ ") = c) (2)

Then g(x+ �) = cA for all k�k2 < R, where

R =
�

2
(��1(pA)� ��1(pB)) (3)

We now make several observations about Theorem 1:

• Theorem 1 assumes nothing about f . This is crucial
since it is unclear which well-behavedness assump-
tions, if any, are satisfied by modern deep architectures.

• The certified radius R is large when: (1) the noise level
� is high, (2) the probability of the top class cA is high,
and (3) the probability of each other class is low.

• The certified radius R goes to 1 as pA ! 1 and
pB ! 0. This should sound reasonable: the Gaussian
distribution is supported on all of Rd, so the only way
that f(x + ") = cA with probability 1 is if f = cA
almost everywhere.

Both Lecuyer et al. (2019) and Li et al. (2018) proved `2
robustness guarantees for the same setting as Theorem 1, but
with different, smaller expressions for the certified radius.
However, our `2 robustness guarantee is tight: if (2) is all
that is known about f , then it is impossible to certify an `2
ball with radius larger than R. In fact, it is impossible to
certify any superset of the `2 ball with radius R:

Theorem 2. Assume pA + pB  1. For any perturbation

� with k�k2 > R, there exists a base classifier f consistent

with the class probabilities (2) for which g(x+ �) 6= cA.

Theorem 2 shows that Gaussian smoothing naturally in-
duces `2 robustness: if we make no assumptions on the base
classifier beyond the class probabilities (2), then the set of
perturbations to which a Gaussian-smoothed classifier is
provably robust is exactly an `2 ball.

The complete proofs of Theorems 1 and 2 are in Appendix
A. We now sketch the proofs in the special case when there
are only two classes.

Theorem 1 (binary case). Suppose pA 2 ( 12 , 1] satisfies

P(f(x + ") = cA) � pA. Then g(x + �) = cA for all

k�k2 < ���1(pA).

Proof sketch. Fix a perturbation � 2 Rd. To guarantee
that g(x + �) = cA, we need to show that f classifies the
translated Gaussian N (x + �,�2I) as cA with probability
> 1

2 . However, all we know about f is that f classifies
N (x,�2I) as cA with probability � pA. This raises the
question: out of all possible base classifiers f which classify
N (x,�2I) as cA with probability � pA, which one f⇤

classifies N (x+�,�2I) as cA with the smallest probability?
One can show using an argument similar to the Neyman-
Pearson lemma (Neyman & Pearson, 1933) that this “worst-
case” f⇤ is a linear classifier whose decision boundary is
normal to the perturbation � (Figure 3):

f⇤(x0) =

(
cA if �T (x0 � x)  �k�k2��1(pA)

cB otherwise
(4)

This “worst-case” f⇤ classifies N (x + �,�2I) as cA with
probability �

⇣
��1(pA)� k�k2

�

⌘
. Therefore, to ensure that

even the “worst-case” f⇤ classifies N (x+�,�2I) as cA with
probability > 1

2 , we solve for those � for which

�

✓
��1(pA)�

k�k2
�

◆
>

1

2

which is equivalent to the condition k�k2 < ���1(pA).

Theorem 2 is a simple consequence: for any � with k�k2 >
R, the base classifier f⇤ defined in (4) is consistent with (2);
yet if f⇤ is the base classifier, then g(x+ �) = cB .
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Figure 3. Illustration of f⇤ in two dimensions. The concentric
circles are the density contours of N (x,�2I) and N (x+ �,�2I).
Out of all base classifiers f which classify N (x,�2I) as cA (blue)
with probability � pA, such as both classifiers depicted above,
the “worst-case” f⇤, which classifies N (x + �,�2I) as cA with
minimal probability, is the classifier depicted on the right: a linear
classifier with decision boundary normal to the perturbation �.

Figure 5 (left) plots our `2 robustness guarantee against
the guarantees derived in prior work. Observe that our
R is much larger than that of Lecuyer et al. (2019) and
moderately larger than that of Li et al. (2018). Appendix I
derives the other two guarantees using this paper’s notation.

Linear base classifier A two-class linear classifier
f(x) = sign(wTx + b) is already certifiable: the distance
from any input x to the decision boundary is |wTx+b|/kwk,
and no perturbation � with `2 norm less than this distance
can possibly change f ’s prediction. In Appendix B we show
that if f is linear, then the smoothed classifier g is identical
to the base classifier f . Moreover, we show that our bound
(3) will certify the true robust radius |wTx+ b|/kwk, rather
than a smaller, overconservative radius. Therefore, when f
is linear, there always exists a perturbation � just beyond the
certified radius which changes g’s prediction.

Noise level can scale with image resolution Since our
expression (3) for the certified radius does not depend ex-
plicitly on the data dimension d, one might worry that ran-
domized smoothing is less effective for images of higher
resolution — certifying a fixed `2 radius is “less impressive”
for, say, a 224⇥ 224 image than for a 56⇥ 56 image. How-
ever, as illustrated by Figure 4, images in higher resolution
can tolerate higher levels � of isotropic Gaussian noise be-
fore their class-distinguishing content gets destroyed. As
a consequence, in high resolution, smoothing can be per-
formed with a larger �, leading to larger certified radii. See
Appendix G for a more rigorous version of this argument.

3.2. Practical algorithms

We now present practical Monte Carlo algorithms for eval-
uating g(x) and certifying the robustness of g around x.

More details can be found in Appendix C.

3.2.1. PREDICTION

Evaluating the smoothed classifier’s prediction g(x) re-
quires identifying the class cA with maximal weight in the
categorical distribution f(x+ "). The procedure described
in pseudocode as PREDICT draws n samples of f(x + ")
by running n noise-corrupted copies of x through the base
classifier. Let ĉA be the class which appeared the largest
number of times. If ĉA appeared much more often than any
other class, then PREDICT returns ĉA. Otherwise, it abstains
from making a prediction. We use the hypothesis test from
Hung & Fithian (2019) to calibrate the abstention threshold
so as to bound by ↵ the probability of returning an incorrect
answer. PREDICT satisfies the following guarantee:
Proposition 1. With probability at least 1 � ↵ over the

randomness in PREDICT, PREDICT will either abstain or

return g(x). (Equivalently: the probability that PREDICT
returns a class other than g(x) is at most ↵.)

The function SAMPLEUNDERNOISE(f , x, num, �) in the
pseudocode draws num samples of noise, "1 . . . "num ⇠
N (0,�2I), runs each x + "i through the base classifier f ,
and returns a vector of class counts. BINOMPVALUE(nA,
nA +nB , p) returns the p-value of the two-sided hypothesis
test that nA ⇠ Binomial(nA + nB , p).

Even if the true smoothed classifier g is robust at radius R,
PREDICT will be vulnerable in a certain sense to adversarial
perturbations with `2 norm slightly less than R. By engi-
neering a perturbation � for which f(x+ � + ") puts mass
just over 1

2 on class cA and mass just under 1
2 on class cB ,

an adversary can force PREDICT to abstain at a high rate. If
this scenario is of concern, a variant of Theorem 1 could be
proved to certify a radius in which P(f(x+ �+ ") = cA) is
larger by some margin than maxc 6=cA P(f(x+ � + ") = c).

3.2.2. CERTIFICATION

Evaluating and certifying the robustness of g around an
input x requires not only identifying the class cA with maxi-
mal weight in f(x+ "), but also estimating a lower bound
pA on the probability that f(x + ") = cA and an upper
bound pB on the probability that f(x+ ") equals any other
class. Doing all three of these at the same time in a sta-
tistically correct manner requires some care. One simple

Figure 4. Left to right: clean 56 x 56 image, clean 224 x 224 image,
noisy 56 x 56 image (� = 0.5), noisy 224 x 224 image (� = 0.5).
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Randomized smoothing: guarantee

§ Theorem: g is R-robust at x, where
– !" is the probability of the most likely class with f(x)
– !# is the probability of the second most likely class with f(x) 

– Simple upper bound: $ ≤ &
#Φ

("(!")
⇒ classifier f is constant (robust) around x with radius R

§ this L2 robustness guarantee is tight
– it is impossible to have a guarantee larger than R (with the L2-distance)
– with the L2-norm using gaussian noise is ``optimal’’

21
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How does it work?

§ Given: testing sample x and noise variance !
– Sampling: Run "($ + &) sufficient number of times where & ∼ ) 0, !,

and compute the most frequent class
» 100 000 evaluations are usually enough (takes around 150 sec on imagenet)

– The most frequent class is the final (robust) prediction
(-. and -/ can also be computed and hence the radius R) 

– if -. and -/ are too close, then don’t provide certification
» sampling has some error

§ Notice: due to sampling, the ultimate guarantee (certificate) is
probabilistic!

§ each testing sample can have different radius R

22
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How large is the noise?

§ the larger noise (!) the larger R is, and hence we have stronger
guarantee

23

" = 0.5" = 0.25" = 0 " = 1

) = 0 ) = 0.31 ) = 1.025 ) = 2.05
(supposing that panda is predicted with 98% and ostrich with 2%)
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Training

§ In theory, the model f can be trained without noise…
§ In practice, some training samples need to be noisy

– in high dimension, the gaussian noise has no mass around its mode x and 
hence the noisy and non-noisy image is very different for a classifier

– f will not learn to classify the noisy sample correctly

24

Corruption with Gaussian noise ! = 0.5

98% ostrich, 
2% panda

Ostrich

Robust but incorrect
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Empirical evaluation

§ Verification/certification time (per sample): 15-150 sec
§ Trade-off between ! and accuracy: when σ (the noise) is high, 

the standard accuracy is lower (but the classifier is more robust)

25

Certified accuracy ="#$" $%&'(# ) $*+, ",%" - ) .$ +/00#+" ⋀ R of x > radius
%(( "#$" $%&'(#$

CIFAR-10 ImageNet
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Differential Privacy and Certified Robustness

§ If pixels correspond to records, then
differential privacy (DP) expresses the 
« stability » of the prediction with respect 
to pixels
– Sanitizer A is !, # − %& if  

Pr ) % = + ≤ -. Pr ) %/ = + + #

for any neighboring dataset D and D’ and 
output O

– Now: !, # − 123-4%& if 

Exp ) 3 ≤ -. Exp ) 3 + 8 + #
for any 8 ∈ :;(=)
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Figure 3. Illustration of f⇤ in two dimensions. The concentric
circles are the density contours of N (x,�2I) and N (x+ �,�2I).
Out of all base classifiers f which classify N (x,�2I) as cA (blue)
with probability � pA, such as both classifiers depicted above,
the “worst-case” f⇤, which classifies N (x + �,�2I) as cA with
minimal probability, is the classifier depicted on the right: a linear
classifier with decision boundary normal to the perturbation �.

Figure 5 (left) plots our `2 robustness guarantee against
the guarantees derived in prior work. Observe that our
R is much larger than that of Lecuyer et al. (2019) and
moderately larger than that of Li et al. (2018). Appendix I
derives the other two guarantees using this paper’s notation.

Linear base classifier A two-class linear classifier
f(x) = sign(wTx + b) is already certifiable: the distance
from any input x to the decision boundary is |wTx+b|/kwk,
and no perturbation � with `2 norm less than this distance
can possibly change f ’s prediction. In Appendix B we show
that if f is linear, then the smoothed classifier g is identical
to the base classifier f . Moreover, we show that our bound
(3) will certify the true robust radius |wTx+ b|/kwk, rather
than a smaller, overconservative radius. Therefore, when f
is linear, there always exists a perturbation � just beyond the
certified radius which changes g’s prediction.

Noise level can scale with image resolution Since our
expression (3) for the certified radius does not depend ex-
plicitly on the data dimension d, one might worry that ran-
domized smoothing is less effective for images of higher
resolution — certifying a fixed `2 radius is “less impressive”
for, say, a 224⇥ 224 image than for a 56⇥ 56 image. How-
ever, as illustrated by Figure 4, images in higher resolution
can tolerate higher levels � of isotropic Gaussian noise be-
fore their class-distinguishing content gets destroyed. As
a consequence, in high resolution, smoothing can be per-
formed with a larger �, leading to larger certified radii. See
Appendix G for a more rigorous version of this argument.

3.2. Practical algorithms

We now present practical Monte Carlo algorithms for eval-
uating g(x) and certifying the robustness of g around x.

More details can be found in Appendix C.

3.2.1. PREDICTION

Evaluating the smoothed classifier’s prediction g(x) re-
quires identifying the class cA with maximal weight in the
categorical distribution f(x+ "). The procedure described
in pseudocode as PREDICT draws n samples of f(x + ")
by running n noise-corrupted copies of x through the base
classifier. Let ĉA be the class which appeared the largest
number of times. If ĉA appeared much more often than any
other class, then PREDICT returns ĉA. Otherwise, it abstains
from making a prediction. We use the hypothesis test from
Hung & Fithian (2019) to calibrate the abstention threshold
so as to bound by ↵ the probability of returning an incorrect
answer. PREDICT satisfies the following guarantee:
Proposition 1. With probability at least 1 � ↵ over the

randomness in PREDICT, PREDICT will either abstain or

return g(x). (Equivalently: the probability that PREDICT
returns a class other than g(x) is at most ↵.)

The function SAMPLEUNDERNOISE(f , x, num, �) in the
pseudocode draws num samples of noise, "1 . . . "num ⇠
N (0,�2I), runs each x + "i through the base classifier f ,
and returns a vector of class counts. BINOMPVALUE(nA,
nA +nB , p) returns the p-value of the two-sided hypothesis
test that nA ⇠ Binomial(nA + nB , p).

Even if the true smoothed classifier g is robust at radius R,
PREDICT will be vulnerable in a certain sense to adversarial
perturbations with `2 norm slightly less than R. By engi-
neering a perturbation � for which f(x+ � + ") puts mass
just over 1

2 on class cA and mass just under 1
2 on class cB ,

an adversary can force PREDICT to abstain at a high rate. If
this scenario is of concern, a variant of Theorem 1 could be
proved to certify a radius in which P(f(x+ �+ ") = cA) is
larger by some margin than maxc 6=cA P(f(x+ � + ") = c).

3.2.2. CERTIFICATION

Evaluating and certifying the robustness of g around an
input x requires not only identifying the class cA with maxi-
mal weight in f(x+ "), but also estimating a lower bound
pA on the probability that f(x + ") = cA and an upper
bound pB on the probability that f(x+ ") equals any other
class. Doing all three of these at the same time in a sta-
tistically correct manner requires some care. One simple

Figure 4. Left to right: clean 56 x 56 image, clean 224 x 224 image,
noisy 56 x 56 image (� = 0.5), noisy 224 x 224 image (� = 0.5).
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Conclusions

§ Guaranteeing provable robustness is crucial in safety critical
applications

§ Verification of robustness on a generically trained neural network 
is hard
– there are approximations with their own limitations

§ Randomized smoothing perturbs training and testing to provide
provable robust guarantees
– provides robustness guarantee with arbitrarily large confidence (at the 

cost of computation time)
– Pro: general approach, works for any machine learning model!
– Con: accuracy loss can be substantial depending on the model and data
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