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WHY DO WE NEED CERTIFIED

ROBUSTNESS?




L8 A

Attackers Defenders

= practitioners design new ways of hardening classifiers against existing
attacks, and then a new class of attacks is developed that can penetrate
this defense

= Distillation (Papernot et al., 2016) -> Broken: Carlini & Wagner, 2017
= Rotation and scaling (Lu et al., 2017) -> Borken: Athalye, 2017



= The lesson has been learnt from crypto...

= Design classifiers that are guaranteed to be robust to adversarial
perturbations!!!

— even if the attacker is given full knowledge of the classifier

— any weaker attempt of “security through obscurity” could ultimately prove
unable to provide a robust classifier
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What is robustness?

» fisrobustto adversarial examples if its output is insensitive to
small changes to any plausible input that may be encountered in
deployment

— model robustness is typically assessed on inputs from a test set that are
not used in model training
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= Problems:
1. How to verify that an already trained model is robust?
2. How to train a model so that it becomes robust?



Problem of Verification

" Find the largest “neighborhood” of a sample x such that all
neighboring samples within this neighborhood has the same
prediction

— neighboring samples are visually similar

— arobustness verification program A gives a guarantee that no adversarial
examples exist within a certain radius of x
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Problem of Robust Training

= How to train a model so that it becomes robust?

— a model is robust to adversarial examples if its output is insensitive to
small changes to any plausible input that may be encountered in
deployment

— model robustness is typically assessed on inputs from a test set that are
not used in model training
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What do we mean by neighborhood?

= P-norm ball or radius r:

B,(r) :=4{0 e R":

Ollp <7}

" p =0:changes are concentrated on a few pixels

" p>1:change may spread out over many or all features
— more powerful, as they can remain invisible

Original input “L, neighborhood” with 6 = 0.1




What do we mean by neighborhood?

= p-norm ball or radius r:

Bp(r) =10 € R*  ||d]], <7}

= An attacker can craft a successful adversarial example for a given
p-norm if they find § € B, (r) such that f(x) # f(x + )

— an adversary can find perturbation § so small that x + & looks just like x to
the human eye, yet the network classifies x + é as a different, incorrect

class
x+ 6,

Original input x X+ 0y “61”2 = ||52”2
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f(x) = Panda f(x + 6;) = Ostrich f(x + 8,) = Ostrich




Robustness, once again ...

= Definition:
fis R-robust at x, if forany § € B,(R), f(x) = f(x + §)

— fis constant around R-sized “neighborhood” of input x

* Robustness verification
— Is f R-robust at x?

= Robust training

— fis guaranteed to be (provably) R-robust no matter what x is




COMPLETE AND INCOMPLETE

VERIFICATION




Verification: it is hard...

Do all points in this polytope
have the same prediction?

This is an NP-hard problem!

A
f(x + 8)/=Panda?

(x) = Panda?

>

Input x and
allowable perturbations  pgep network £ adversarial polytope
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= Complete verifiers reason about the exact polytope

— Slow, (may not terminate in reasonable time) but gives definite answer (if it
terminates)

= Incomplete verifiers bound the adversarial polytope
— More scalable, but provide only approximations (false negatives may occur)



Examples for incomplete (but sound) verifiers

A O O A A
] —0—0— g =
Input x and O 9 > Convex outer bond

allowable perturbations  peep network ~ adversarial polytope

T2 2
Zy = V| 01 I
z1M(z1>0) <229 ) 224
1+ 1+
T2 T2 ) T2 2
s 2 -1 3 | | | 2 | | ; 2 3 3
21 20 0 1 B =2 =l 12 -2 -1 12 . ReLU, -
211 6 7
— U 4
1q 1+ o 2 2 1 ° 1
Ty

T 1 0 0 hn
3| 3
~1 1 2 3 2 1 R s (01) P )—2—1‘12 —2—1‘12
3 5
zZ3 = #
Z1|_|($1<0) | . 1
1

=7 =i 12 =7 =i 12




Robust training with convex approximations

= Replace each training sample with its « worst » neighbor, then
train the network with this new training data

min s Z ||§ﬂ?§R Loss(f(x; +6), ylz)

Panda

= Computing the worst-case neighbor is hard, hence they bound f
with a convex function




= Complete verifiers work only on very small networks
— due to NP-hard nature of the underlying problem

" |ncomplete verifiers (or training) work only on neural networks
with RelLU activation functions

Is there a method for any kind of neural networks that is also
scalable?




RANDOMIZED SMOOTHING




Randomized smoothing: Overview

Train the classifier f with the samples corrupted by some noise
with variance o

" |n the testing phase, return the class which fis most likely to
return when x is corrupted by Gaussian noise with variance o

Original input Corruption with Gaussian noise = 0.5

98 % panda, 2 % ostrich

Pandall!
-l



Randomized smoothing: Provably robust

Original input Corruption with Gaussian noise g = 0.5

98 % panda, 2 % ostrich

Pandalll

= This classifier is provably robust!

— it has the same prediction around any input sample x within a L,-radius
of 6 - ®71(p,), where p; is the probability of the most confident class at

sample x (0.98 for panda above'



Randomized smoothing: details

= transforms any arbitrary base classifier f into a new “smoothed
classifier” g that is certifiably robust in |,-norm

g(z) = argmax P(f(zx +¢) = ¢)
cey

where & ~ N(0,0°1)

= g(x) returns the most probable prediction by f of random
Gaussian corruptions of x



Randomized smoothing: guarantee

0l
= Theorem: g is R-robust at x, where R = §(<I>_1(p1) —d 1 (p2))
— pq is the probability of the most likely class with f(x)

— p, is the probability of the second most likely class with f(x)
— Simple upper bound: R < %d)‘l(pl)

= classifier f is constant (robust) around x with radius R

" this L, robustness guarantee is tight

— itis impossible to have a guarantee larger than R (with the L,-distance)
— with the L,-norm using gaussian noise is ~optimal”




How does it work?

" Given: testing sample x and noise variance o

— Sampling: Run f(x + &) sufficient number of times where § ~ N(0, o)
and compute the most frequent class

» 100 000 evaluations are usually enough (takes around 150 sec on imagenet)

— The most frequent class is the final (robust) prediction
(p1 and p, can also be computed and hence the radius R)

— if p; and p, are too close, then don’t provide certification

» sampling has some error

= Notice: due to sampling, the ultimate guarantee (certificate) is
probabilistic!

= each testing sample can have different radius R



How large is the noise?

= the larger noise (o) the larger R is, and hence we have stronger
guarantee

R=0 R =0.31 R =1.025 R =2.05

(supposing that panda is predicted with 98% and ostrich with 2%)




" |ntheory, the model f can be trained without noise...
" |n practice, some training samples need to be noisy

— in high dimension, the gaussian noise has no mass around its mode x and
hence the noisy and non-noisy image is very different for a classifier

— fwill not learn to classify the noisy sample correctly

Corruption with Gaussian noise 0 = 0.5

98% ostrich, » Ostrich
2% panda

Robust but incorrect




Empirical evaluation

test sample x such that f(x)is correct A R of x > radius
all test samples

Certified accuracy =

CIFAR-10 ImageNet
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= \erification/certification time (per sample): 15-150 sec

" Trade-off between o and accuracy: when o (the noise) is high,
the standard accuracy is lower (but the classifier is more robust)



DIFFERENTIAL PRIVACY AND

ROBUSTNESS




Differential Privacy and Certified Robustness

= |f pixels correspond to records, then
differential privacy (DP) expresses the
« stability » of the prediction with respect
to pixels
— Sanitizer Ais (¢,y) — DP if

Pr(A(D) =0) < e®*Pr(A(D') =0) +vy

for any neighboring dataset D and D’ and
output O

— Now: (&,y) — pixelDP if

Exp(A(x)) < e®Exp(A(x +8)) +vy
forany § € B,(R)




CONCLUSIONS




Conclusions

" Guaranteeing provable robustness is crucial in safety critical
applications

= Verification of robustness on a generically trained neural network
is hard

— there are approximations with their own limitations

= Randomized smoothing perturbs training and testing to provide
provable robust guarantees

— provides robustness guarantee with arbitrarily large confidence (at the
cost of computation time)

— Pro: general approach, works for any machine learning model!
— Con: accuracy loss can be substantial depending on the model and data
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