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Motivation: manifolds and point 
clouds in ML

Dat
a

Los
s

Hyperparameter 
surface 

Given data X={(x1,y1),..,(xT,yT)},

Our goal is to find a hypothesis h(x),      
which approximate y accurately over X. 

Manifolds or just sets of independent 
points? 



Manifolds or point clouds?

Data Loss Hyperparameter surface 

usually NOT a topological 
manifold

usually a differentiable manifold 
[Ollivier et al, 2015, 

Choromanska et al., 2015]
feed-forward NNs define 

statistical manifolds
[Cencov, 1982, 

Campbell, 1986, Amari, 1996]

usually a set of topological 
manifolds but not differentiable



Manifolds or point clouds?

Augmentation 
[Khrizhevsky et al., 2012]

Regularization 
and Dropout [Hinton et al., 2012]

Network structure

usually NOT a topological 
manifold 

usually a differentiable 
manifold

usually a set of topological 
manifolds, but not differentiable

Data Loss Hyperparameter surface 



Generalization?

Dat
a

Los
s

Hyperparameter 
surface 

Given data X={(x1,y1),..,(xT,yT)},

Our goal is to find a hypothesis, h(x) which approximate y over 
X.

1. How to measure the performance of the approximation? 

2. How to generalize? Difference between the true loss and the 
empirical loss?

3. How to choose the function class?  
e.g. linear separators, NN, etc.

4. How to find a particular element in the function class? 
e.g. “random walk on Loss”

Today we will focus on 2 for NNs, with relation to manifolds.  



1. Generalization: Vapnik-Chervonenkis theorem and deep neural 
networks

2. Information geometry of neural networks: Fisher-Rao norm and K-
FAC approximation of Fisher information

3. Complexity of ReLU networks: evaluation of linear regions and 
tangent space sensitivity

Outline



Generalization

Three related approaches:

1. Capacity: worst/best case scenarios of a function class, e.g. VC-dim 
[V&C,1971, Bartlett, 2003, Maas, 1993 etc.]

Recently realized NN issue [Nagarajan et al., 2019]: uniform 
convergence may be unable to explain generalization in deep NN

1. Stability: robustness of learning algorithms, e.g. algorithmic and 
uniform argument stability, loss stability [Bartlett et al., 2003, Liu et al., 
2017]

1. Local sensitivity: robustness of the already visited solutions, e.g. 
flatness [Hochreiter, 1997, Neyshabur et al. 2018, Dinh et al., 2018,     
Novak et al. 2018]



Capacity: background, the VC dimension

Vapnik-Chervonenkis theorem: connection between generalization, 
training set selection, and model selection

Empirical risk:

where X = {(xi,yi)} has cardinality T.

Theorem (informal): if we optimize for a binary loss function (0 if f(xi) = yi

and 1 if not) over a set of independent samples from a fixed distribution
D with known labels (the training set), then the true risk Rtrue(f) (the 
expected value of the loss function over D) is upper bounded by the 
empirical risk plus an additional value depending on function class 
capabilities. 



The VC-theorem [Vapnik and Chervonenkis, 1971]: the worst case scenario

For binary classification with a binary loss function and function class F, the 
generalization (the difference between the true and the empirical risk) is bounded as 
follows (here we assume uniform convergence of relative frequencies)

and 

Capacity

Optimization for low true risk is a balance between low empirical risk and low VC-
dimension. 



VC dimension and feed-forward Neural 
Networks

VC-dimension (VCdim) of linear separator is d+1
VC-dimension of polynomial separator ... is infinite (with sufficiently high degree, poly kernel SVM) 

Arbitrary feed-forward neural network [Cover, 1968, Baum & Haussler, 1989, Maas, 1993, Sakurai, 
1993] with linear threshold, piecewise linear or sigmoidal activation functions and parameters w:

• with fixed depth VCdim = O(w log w)
• if the depth is unbounded the VCdim is O(w2)

There exists a feed-forward network with infinite VCdim: a special activation function and the network 
has only a single hidden layer [Sontag, 1992].

Uniform convergence bounds are a bad choice for complex classifiers because these hypotheses 

classes have infinite VC-dimension or the bound is meaningless. 

Idea [Nagarajan & Kolter, 2019]: what if we select a meaningful subset of the hypothesis class? 



Uniform convergence in case of NN 
[Nagarajan&Kolter, 2019]

11

Even these hypothesis sets (in case of overparametrized networks and GD) result useless bounds…

They show: 

1. Generalization gap increases if the training set is getting larger

2. Hypothesis: learned boundary of overparametrized networks is too complex

Idea: They construct a “bad” data set (S’) which is

completely missclassified and similarly sized as the

training set -> low test error and low training error

does not indicate low generalization gap -> uniform

convergence fails (Q: polynomial separation?)

In the example on the right they pick S′ by simply

projecting every training datapoint on the inner

hypersphere onto the outer and vice versa, and then

flipping the labels (to the correct one).

V. Nagarajan & J.Z. Kolter: Uniform convergence may be unable to explain generalization in deep learning, NeurIPS 

2019
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Generalization

Three not so independent approaches:

1. Capacity: worst/best case scenarios of a function class e.g. VC-dim 
[V&C,1971, Bartlett, 2003, Maas, 1993 etc.]

1. Stability: robustness of learning algorithms e.g. algorithmic and 
uniform argument stability, loss stability [Bartlett et al., 2003, Liu et 
al., 2017]
Note: we do not have time for this today, but they are wonderful 

results!

1. Local sensitivity: robustness of the already visited solutions e.g. 
flatness [Hochreiter et al., 1997, Neyshabur et al. 2018, Dinh et al., 
2018, Novak et al. 2018]
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Flatness hypothesis?

[Hochreiter & Schmidhuber, 1997] flat 

minimum is "a large connected region in 

weight space where the error remains 

approximately constant". Loss manifold!

But ReLU is 

1-homogeneous

...

[Dinh et al., 2018]
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Flatness hypothesis 

Properties which should hold for a proper complexity measure:

• “networks learned using real labels (and which generalizes well) have much lower complexity
than networks learned using random labels (and which obviously do not generalize well).”

• “complexity measure decrease as we increase the number of hidden units.“

• “We expect a correlation between the complexity measure and generalization ability among 
zero-training error models. “

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro  Exploring Generalization in Deep Learning, 2017
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Flatness hypothesis  [Neyshabur et al., 2017]

They investigate four norm-based measures (fw(x) function with parameter w):

where the margin is defined as (max margin as in SVM :) ):
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Since the above measures are still not good enough they suggest the expected sharpness:

Sharpness [Keskar et al., 2016]:

Expected sharpness:

(it is more complicated, please read the paper)

Flatness hypothesis  [Neyshabur et al., 2017]
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Unfortunately these bounds are not 

connected to the properties of the 

optimization 

The starting hypothesis was that 

sharpness, flatness are realistic 

measures for generalization… or? 

Flatness hypothesis  [Neyshaur et al., 2017]
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Flatness hypothesis [Dinh et al., 2018]

Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio: Sharp Minima Can Generalize For Deep Nets, 2017

Transformations which 
do not change the 
output but allow 
rescaling of 
parameters… (OK, 
reg.?)

Flatness is arbitrary and 
symmetry of ReLU 
deep networks allow us 
to make, delete or shift 
flat valleys… :( 

Great, what’s next?

Geometry!



1. Generalization: Vapnik-Chervonenkis theorem and deep neural 
networks

2. Information geometry of neural networks: Fisher-Rao norm 
and K-FAC approximation of Fisher information

3. Complexity of ReLU networks: evaluation of linear regions and 
tangent space sensitivity

Outline



Liang, Poggio, Rakhlin & Stokes, 2017: Fisher-Rao Metric, Geometry, and Complexity of Neural 

Networks

They propose the following questions:

1. What are the complexity notions that control the generalization aspects of neural networks? 

2. Why does stochastic gradient descent, or other variants, find parameters with small 

complexity?

Motivation:

1. There are many continuous operations on the parameters of ReLU nets that will result in exactly 

the same prediction -> generalization can only depend on the equivalence class obtained by 

identifying parameters under these transformations

2. Flatness of the loss function: not too robust [Dinh et al., 2018], although… 

Fisher-Rao metric and complexity of neural 
networks [Liang et al., 2017]



Flatness of the loss function: not too robust [Dinh et al., 2018], although… 

● Geometric characterization of generalization that is invariant under some transformations 

which causes flat minima measures to fail

● in case of information geometry … Fisher information :)

● they assume bias-less ReLU networks... 

For linear functions:                                    the tangent space of a ReLU nets.

Fisher-Rao metric and complexity of neural 
networks [Liang et al., 2017]



sidenote: Fisher information

Let us consider a parametric class of probability models P(X|θ) where θ ∈ Θ ⊆ Rd.

Provided that the dependence on θ is sufficiently smooth, the collection of models with parameters
from Θ can then be viewed as a (statistical) manifold MΘ. MΘ can be turned into a Riemannian
manifold by giving a scalar product at the tangent space of each point P(X|θ) ∈ MΘ via a positive
semi-definite matrix F(θ), which varies smoothly with the base point θ.

Classical gradient based learning -> walking on a manifold via a continuously differentiable function 
and the dimension is …  (DNN?) 

Special metrics on NN [Ollivier et al., 2015] for better optimization. Fisher information (F(θ) or Iθ)is a 
special case of Hessian metrics [Shima et al., 1995, Amari, 2000]:



In particular, if P(X|θ) is a probability density function, then the ij-th entry of F(θ) is

If we refer the vector GX = ∇θ log P (X|θ) as the Fisher score of the example X, we can define a
mapping X -> GxF

-1/2 and a kernel

An intuitive interpretation is that GX gives the direction where the parameter vector θ should be
changed to fit best the data X.

Why F-1? Steepest (the gradient has fixed length) natural gradient by Shun-ichi Amari
[Amari,1996]!

It can be proved that the Fisher metric under congruent embeddings by Markov morphisms is 
distance preserving (isometry) [Cencov,1982]

Moreover the Fisher metric is essentially the unique Riemannian metric with this property 
[Campbell,1985,Campbell,1986, Lebanon, 2004, Petz et al.,1999, Jaakkola and Haussler, 1998].

sidenote: Fisher information



1. Let data generating process belong to a parametric family 

2. Fisher-Rao metric on a parametric family is defined via an inner product for each configuration 

3. For each pair of parameter (drawn from the fam.) define a pair of tangent vectors: 

and a local inner product (posdef. -> Fisher-Rao metric): 

Seems like something connected to Fisher information, and no surprise it is: 

Fisher-Rao metric and complexity of neural 
networks [Liang et al., 2017]



Is there any relation to generalization?

Fisher-Rao metric and complexity of neural 
networks [Liang et al., 2017]

Equivalence classes are determined by FR.
FR vs. ɑ-scaling?



Capacity measures on label 
randomization after opt. with GD. Neurons per hidden layer

Fisher-Rao metric and complexity of neural 
networks [Liang et al., 2017]

Generalization 
gap

emp. FR

est. FRpath norm

l2 norm

spectral norm

path norm

spectral norm

est. FR

l2 norm



Capacity measures on label 
randomization after opt. with GD. Neurons per hidden layer

Fisher-Rao metric and complexity of neural 
networks [Liang et al., 2017]

Great! Now we just need to calculate Fisher 
information.... 



K-FAC [Martens & Grosse, 2015] 

Kronecker 
product 

(inverse!!!!!):

Martens, James, and Roger Grosse. "Optimizing neural networks with kronecker-factored approximate 
curvature." In International conference on machine learning, pp. 2408-2417. 2015. Fun fact: [Heskes, 2000]

Fisher information:

Fisher score:

thus



K-FAC [Martens & Grosse, 2015] 

Fisher information:

Fisher score:

thus

Great! Wait a minute, why 
are we even doing this?



K-FAC [Martens & Grosse, 2015] 

Fisher information:

Fisher score:

thus

Natural gradient 
[Amari, 1998] is finally 

possible on large-scale NN!



1. Generalization: Vapnik-Chervonenkis theorem and deep neural 
networks

2. Information geometry of neural networks: Fisher-Rao norm 
and KFAC approximation of Fisher information

3. Complexity of ReLU networks: evaluation of linear regions and 
tangent space sensitivity

Outline



Complexity of linear regions

Hanin & Rolnick, Deep ReLU Networks Have Surprisingly Few Activation Patterns, 2019
Hanin & Rolnick, Complexity of Linear Regions in Deep Networks, 2019

Given a vector θ of its trainable parameters, N computes a continuous and piecewise linear
function x 􏰀 → N (x; θ). Thus each θ is associated with a partition of input space Rinput into
activation regions, polytopes on which N (x; θ) computes a single linear function corresponding
to a fixed activation pattern in the neurons of N .



Complexity of linear regions 
[Hanin & Rolnick, 2019](2x)

What is the difference between the maximum complexity of deep networks (exponential [Montufar et al., 

2014]) and the complexity of functions that are actually learned in case of ReLU networks?

1.surprisingly small gap between Finit and Flearn 

2. the number of activation regions at start 

((#neurons)2/2) is not increasing exponentially during 

training



Complexity of linear regions 
[Hanin & Rolnick, 2019](2x)

Extreme states (exp. number of 
regions) are not stable! 

Even with small perturbations the 
complexity may fall… 

Activation regions (input points with the same neuron activation pattern) are convex -> Are

linear regions (connected components where the function is linear) convex?



Complexity of linear regions 
[Hanin & Rolnick, 2019](2x)

Activation regions (for any piecewise linear activation, ot just ReLU) are convex -> Are linear 

regions convex?

No, they are not! 

Imagine a two convex regions joined together with a smooth (diff.!) border… or just a C-

shaped smooth  linear region with three convex activation regions.

The number of activation regions is always at least as large as the number of linear regions.

E.g. an entire layer of the network is zeroed out by ReLUs, leading many distinct activation 

regions to coalesce into a single linear region. 



Main result: upper bounds on the average number of activation regions per unit volume of input space for a feed-forward ReLU 

net with random weights/biases.

Complexity of linear regions 
[Hanin & Rolnick, 2019](2x)



E.g. Average number of activation patterns in N over all of Rn is at most (#neurons)n /n!, its value for depth 1 networks 

Complexity of linear regions [Hanin & Rolnick, 2019]

The average number of activation regions in a 2D cross-section of input space, for fully connected networks of various 
architectures training on MNIST.  (so (#neurons)2/2 in this case as n is 2) 

Wait a minute: what happened with the number of activation regions throughout training? 

Effect of different noise levels on a [32,32,32] network, still MNIST. There are slightly, but not exponentially, more regions when memorizing more 



The number of regions increased during training, and increased more for greater amounts of memorization. 

The exception for the maximum amount of memorization, where the network essentially failed to learn -> insufficient capacity?

Complexity of linear regions [Hanin & Rolnick, 2019]

The number of activation regions after training increases slightly with increasing memorization, until the task becomes too hard for the network and 
training fails altogether.

Varying the learning rate yields slight increase -> hypothesis: the small increase in activation regions is probably not a result of hyperparameter choice.  

2D points with 
random binary 
labels -> 
memorization 
(predicted 
#act.regions: 4608). 

5000 2D points with 
random binary 
labels (approx. 4608 
regions), different 
weight scales and 
learning rates.



What happens if we initialize biases to zero: 

Holds only for simple ReLU nets with no ties and biases, they believe that their results are true for residual and 
convolutional networks.

Complexity of linear regions [Hanin & Rolnick, 2019]

Conclusions: 

1. The number of activation regions learned in practice by a ReLU network is far from the maximum possible and 
depends mainly on the number of neurons in the network, rather than its depth. 

2. If network gradients and biases are well-behaved (~ bounded biases and gradients), the partition of input space 
learned by a deep ReLU network is not significantly more complex than that of a shallow network with the same 
number of neurons.



Green points represent 
SGD steps on LL

Gradient vectors at 
step zero

for simplicity here we fixed the bias (b) to a particular and good value

Tangent space sensitivity and the 
distribution of activation regions [D., 2020]

Hypothesis: stability of GD methods depends 
on the stability of tangent mapping

Tangent map and mini-batch learning-> a 
step inside a “random walk” is a result of a 
consensus of the tangent mapping of a small 
set. Can we trust it?

Let us assume Gaussian perturbations 
(smooth)
Adversarial case? Non-smooth 
augmentation?

Loss surface



Effect of small perturbations on tangent mapping?

Tangent space sensitivity and the 
distribution of activation regions

#active neurons per layer Gaussian 
perturbed 
example:

Change in 
the tangent 
space:

#active neurons



Tangent space sensitivity and the 
distribution of activation regions [D., 2020]

Tangent sensitivity and the effect of various network parameters and #layers

Mean

weight norm

#hidden units 
per layerVariance

thus 

Distribution of activation regions
(compact input space)

Q: Volume of convex polytopes? 
:(
see [Lovász & Simonovits, 1993] 
[Lovász & Vempala, 2006]



Conclusions and future work

We know much more than five or ten years ago about deep neural networks. 

Evolution of linear regions could be the key. 

Some ideas:

1. Tangent representations: rank of tangent mapping vs. representation learned by the network

1. Graph limits: take the gradient graph, identify “representation sets” (regularity lemma) 

and check randomness

1. Pushforward, local diffeomorphisms

Find lower or higher dimensional, but a sparser tangent space:
i. dot product representation of the "gradient graph" (not planar)
ii. Johnson-Lindenstrauss theorem -> random orthogonal projection,

independent of the dimension of the manifold
non trivial network structures? Ensemble of structures.

1. Lie groups -> left/right/bi-invariant transformations
[Myers  & Strodeent, 1938, Rao and Ruderman, 1999, 
Hyland and R ̈atsch, 2016, Wisdom et al., 2016, Ox et al., 2017]
Some interesting results: [Pascanu & Bengio, 2014,Sra et al, 2018]

Thank you!


