Information geometry and
generalization in deep neural
networks

Balint Daroczy
SZTAKI
& UCLouvain

21.10.2020



Motivation: manifolds and point
clouds in ML

Given data X={(Xy,Y1),.-,(X1,y1)},
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Manifolds or point clouds?

Loss

usually a differentiable manifold
Ollivier et al, 2015,
Choromanska et al., 2015]
feed-forward NNs define
statistical manifolds
[Cencov, 1982,
Campbell, 1986, Amari, 19906]

Hyperparameter surface

~ ir 1.0

L LIJI)IQ"

iy Yoy e
"r"\f’\n Iy \']{n,”

SRS N g - AR e
L1} ot g, ¢
ooy, gy
e 11} \?4‘:‘,‘, - o
oy, +~
» ll"’ll]’f"‘ 0.8

\I“,‘_r o 2 5
0 Yo NG ay

* g h S S ™ g,
Qo gy =

€ > g o, o

] J 'S ~ e

¥ lﬁ"!nb"uh,\;d I“h‘-,"ﬁ - o

oy X

) o | fin Ghon, X
% Gtes P O T a0

Iu'“lh

usually a set of topological
manifolds but not differentiable



35

3.0

25

2.0

e o ..'. . : ..
NPt

"’ e % e

20

25

a
N
y

manifold

Augmentation

2012]
[Khrizhevsky et al.,

| uds?
Manifolds or point clo

| tiable
a differen
usuallymanifold

Reg
and Dropout

larization ,
'JHinton et al., 201

urface
rameter s
Hyperpa

nlu,"""
'll,,"

D T L llluu,u,“!\f,u“
s Iy
l\o,\l:,,,"l"'l
Tirgy
lu,,"

| ]
: "“l"ll, “'“unu
gy ~
nhnr," = N
N:M '
i . ‘
e "M“.““":M
I

gy
,‘lrl“'/
I'l
o ulur,“"
\I‘)k’lll\l‘
Yooy
uﬂ"l.,, "'"""N,,
‘ ')

'\’”.“”‘K‘“l\h»r',\
p A€ 11 pRd L LTFTYS %
y" ol

L

Loy

‘:l‘nnuu 'luurr D
"}Illlll’bl

e X I,|""“‘\
(34042
LAt

y

Network structure



GGeneralization?

leen data X={(X1 !y‘l)! .- 1(XT!yT)}a "{'fﬁ:.-‘-.

Our goal is to find a hypothesis, h(x) which approximate y over
X.
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1. How to measure the performance of the approximation? Dat

2. How to generalize? Difference between the true loss and the
empirical loss?

3. How to choose the function class?
e.g. linear separators, NN, etc.

4. How to find a particular element in the function class?
e.g. “random walk on Loss”

Today we will focus on 2 for NNs, with relation to manifolds.

Hyperparameter
S surface



Outline

1. Generalization: Vapnik-Chervonenkis theorem and deep neural
networks

2. Information geometry of neural networks: Fisher-Rao norm and K-
FAC approximation of Fisher information

3. Complexity of ReLU networks: evaluation of linear regions and
tangent space sensitivity



(Generalization

Three related approaches:

1.

Capacity: worst/best case scenarios of a function class, e.g. VC-dim
[V&C,1971, Bartlett, 2003, Maas, 1993 etc.]

Recently realized NN issue [Nagarajan et al., 2019]: uniform
convergence may be unable to explain generalization in deep NN

. Stability: robustness of learning algorithms, e.g. algorithmic and

uniform argument stability, loss stability [Bartlett et al., 2003, Liu et al.,
2017}

. Local sensitivity: robustness of the already visited solutions, e.qg.

flatness [Hochreiter, 1997, Neyshabur et al. 2018, Dinh et al., 2018,
Novak et al. 2018]



Capacity: background, the VC dimension

Vapnik-Chervonenkis theorem: connection between generalization,
training set selection, and model selection

Empirical risk:
T

1
emp T Zl

where X = {(x,y,)} has cardinality T

Theorem (informal): if we optimize for a binary loss function (0 if f(x)) = v
and 1 if not) over a set of independent samples from a fixed distribution
D with known labels (the training set), then the true risk R, .(f) (the
expected value of the loss function over D) is upper bounded by the
empirical risk plus an additional value depending on function class
capabillities.



Capacity
The VC-theorem [Vapnik and Chervonenkis, 1971]: the worst case scenario

For binary classification with a binary loss function and function class F, the
generalization (the difference between the true and the empirical risk) is bounded as
follows (here we assume uniform convergence of relative frequencies)

P(sup | Ram(f) = Birue(f) |> €) < 85(F, T)e
-

and

log S(F,T) + log 2
fh

Bisup | Ranp(f) — Rare() [} < 21/

feF

Optimization for low true risk is a balance between low empirical risk and low VC-
dimension.



VC dimension and feed-forward Neural
Networks

VC-dimension (VCdim) of linear separator is d+1
VC-dimension of polynomial separator ... is infinite (with sufficiently high degree, poly kernel SVM)

Arbitrary feed-forward neural network [Cover, 1968, Baum & Haussler, 1989, Maas, 1993, Sakural,
1993] with linear threshold, piecewise linear or sigmoidal activation functions and parameters w:

« with fixed depth VCdim = O(w log w)
. if the depth is unbounded the VCdim is O(w?)

There exists a feed-forward network with infinite VCdim: a special activation function and the network
has only a single hidden layer [Sontag, 1992].

Uniform convergence bounds are a bad choice for complex classifiers because these hypotheses
classes have infinite VC-dimension or the bound is meaningless.

ldea [Nagarajan & Kolter, 2019]: what if we select a meaningful subset of the hypothesis class??



Uniform convergence in case of NN
[INagarajan&Kolter, 2019]

V. Nagarajan & J.Z. Kolter: Uniform convergence may be unable to explain generalization in deep learning, NeurlPS

2019
Even these hypothesis sets (in case of overparametrized networks and GD) result useless bounds...

They show:

1. Generalization gap increases if the training set is getting larger
2. Hypothesis: learned boundary of overparametrized networks is too complex

ldea: They construct a “bad” data set (S’) which is
completely missclassified and similarly sized as the .+

training set -> low test error and low training error — .\,\\
. . . . ] = —(0.51
does not indicate low generalization gap -> uniform £
_ _ _ o —®— Test error
convergence fails (Q: polynomial separation?) ~101 — Error on AN
: : , : 4096 16384 65536
In the example on the rlght they ple S by Slmply Training Set Size Training directions Training directions Random directions

projecting every training datapoint on the Inner
hypersphere onto the outer and vice versa, and then

flipping the labels (to the correct one). »



(Generalization

Three not so iIndependent approaches:

1. Capacity: worst/best case scenarios of a function class e.g. VC-dim
IV&C,1971, Bartlett, 2003, Maas, 1993 etc.]

1. Stabillity: robustness of learning algorithms e.g. algorithmic and
uniform argument stability, loss stability [Bartlett et al., 2003, Liu et
al., 2017]

Note: we do not have time for this today, but they are wonderful
results!

1. Local sensitivity: robustness of the already visited solutions e.g.
flatness [Hochreiter et al., 1997, Neyshabur et al. 2018, Dinh et al.,
2018, Novak et al. 2018]}

12



Flatness hypothesis?

[Dinh et al., 2018]

[Hochreiter & Schmidhuber, 1997] flat

minimum is "a large connected region Iin

weight space where the error remains .
g p BUt Re I_U IS (a) Loss function with default parametrization

approximately constant”. Loss manifold!

1-homogeneous

\ / (b) Loss function with reparametrization

(c) Loss function with another reparametrization



Flathess hypothesis

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro Exploring Generalization in Deep Learning, 2017

Properties which should hold for a proper complexity measure:

» “networks learned using real labels (and which generalizes well) have much lower complexity
than networks learned using random labels (and which obviously do not generalize well).”

» “complexity measure decrease as we increase the number of hidden units.”

» “We expect a correlation between the complexity measure and generalization ability among
zero-training error models. ©

14



Flatness hypothesis [Neyshabur et al., 2017]

They investigate four norm-based measures (f, (x) function with parameter wj:

e /5 norm with capacity proportional to ,T% Hle 4 ||W; Hiﬂ

margin

2
e /,-path norm with capacity proportional to —,Ygl (Zjeﬂﬁzg[hsg] ‘Hle 2Wiljis Jil D

margin
18].
e /5-path norm with capacity proportional to ﬁmm D el hs 1%, 4hs W2[js, ji—1].

e spectral norm with capacity proportional to ,Y% Hle h; [|[Wi|| 3

margin

where the margin is defined as (max margin as in SVM ) ):

fw (%) [Ytrue] — max fw (%)Y

/5 norm

10°0 10°°

-E-I true ‘la,bells
© random labels

10%° 10%°

10K 20K 30K 40K 50K
size of traning set

¢2-path norm

10* 107
10°} 1010

10K 20K 30K 40K 50K
size of traning set

15

1025#: il

¢1-path norm

10K 20K 30K 40K 50K
size of traning set

spectral norm

e

10K 20K 30K 40K 50K
size of traning set




Flatness hypothesis [Neyshabur et al., 2017]

Since the above measures are still not good enough they suggest the expected sharpness:

_ MaX|y; | <a(|w;|+1) E(fw—i-u) — E(fw) N ~ =
Sharpness [Keskar et al., 2016]; ™) = 1+ Z(f) ~ max  L(fwiw) = L{fw)

2 [L(fwtv)] — L(fw)

Expected sharpness:

(it is more complicated, please read the paper)

true labelg ranc:}am labells

a 0.3 A 0.3
12 = true labels § 025 oK g 0 25 . . oK

m 1l -o- random labels|| £ —==10K Q- ll . === 10K
2 .-CCIG 0.2 30K ,.CCIG 0.2} \ . 30K |-
E‘L:.DB S o5l L 50K || S oael | Lo 50K
s 5 % 0r 1L\
2 | £ o g o1

' QO NOB L -V - o e b} L _______ffg.. _______

. %o.os . %0.05 -
. . . . 0 L . 0 J .
10K 20K 30K 40K 50K ~ O 1 2 3 Y 70 1 2 3

size of traning set KL x10° KL x10



error
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0.04}

0.02 ¢

-t
®

-B-training
| |-e-test

~=4={5 norm

spectral norm

-B-path-#; norm

| =-6~-path-£> norm

-@-sharpness

Imeasure

© o o O
o N A~ O 0

3K 4K
#random labels

o

1K 2K 3K
#random labels

expected sharpness

-a-training
-o-test

Imeasure

128 512 2K 8K
#hidden units

—4=£{5 norm
spectral norm
-B-path-£; norm
~O-path-£s norm
-@-sharpness

128

expected sharpness

512
#hidden units

Flatness hypothesis [Neyshaur et al., 2017]

Unfortunately these bounds are not
connected to the properties of the
optimization

The starting hypothesis was that
sharpness, flatness are realistic
measures for generalization... or?

17



Flatness hypothesis [Dinh et al., 2018]

Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio: Sharp Minima Can Generalize For Deep Nets, 2017

Definition 1. Given ¢ > 0, a minimum 0, and a loss L,
we define C (L, 8,€) as the largest (using inclusion as the
partial order over the subsets of © ) connected set containing
6 such that V0’ € C(L,0,¢),L(0") < L(0) + €. The ¢-
flatness will be defined as the volume of C(L, 0, €). We will

call this measure the volume c-flatness.

Theorem 2. For a one-hidden layer rectified neural network
of the form

Yy = gbrect(m ) 91) ) 92:

and a minimum 6 = (61, 05), such that 01 # 0 and 65 # 0,
Ve > 0 C(L, 6, €) has an infinite volume.

Definition S. For a single hidden layer rectifier feedforward
network we define the family of transformations

T, : (01,02) — (af1, 0 105)

which we refer to as a a-scale transformation.

(a) Loss function with default parametrization

(b) Loss function with reparametrization

(c) Loss function with another reparametrization

Transformations which
do not change the
output but allow
rescaling of
parameters... (OK,
reg.?)

Flatness is arbitrary and
symmetry of RelLU
deep networks allow us
to make, delete or shift
flat valleys... i(

Great, what’s next?

Geometry!
18



Outline

1. Generalization: Vapnik-Chervonenkis theorem and deep neural
networks

2. Information geometry of neural networks: Fisher-Rao norm
and K-FAC approximation of Fisher information

3. Complexity of ReLU networks: evaluation of linear regions and
tangent space sensitivity



Fisher-Rao metric and complexity of neural
networks [Liang et al., 2017]

Liang, Poggio, Rakhlin & Stokes, 2017: Fisher-Rao Metric, Geometry, and Complexity of Neural

Networks
They propose the following questions:

1. What are the complexity notions that control the generalization aspects of neural networks?

2. Why does stochastic gradient descent, or other variants, find parameters with small

complexity?

Motivation:

1. There are many continuous operations on the parameters of ReLU nets that will result in exactly
the same prediction -> generalization can only depend on the equivalence class obtained by

identifying parameters under these transformations

D Elatnace nf the Ince fiinctinn® Nt toan rohiict TINiInh at Al 20121 althniliah



Fisher-Rao metric and complexity of neural
networks [Liang et al., 2017]

Flatness of the loss function: not too robust [Dinh et al., 2018], although...

e Geometric characterization of generalization that is invariant under some transformations
which causes flat minima measures to falil
e in case of information geometry ... Fisher information :)

e they assume bias-less RelLU networks...

(0f/00,0) = fo(x)

For linear functions: the tangent space of a RelLLU nets.



sidenote: Fisher information

Let us consider a parametric class of probability models P(X|6) where 6 € © € Rq.

Provided that the dependence on 6 is sufficiently smooth, the collection of models with parameters
from © can then be viewed as a (statistical) manifold My. Mg can be turned into a Riemannian

manifold by giving a scalar product at the tangent space of each point P(X|6) € Mg via a positive
semi-definite matrix F(0), which varies smoothly with the base point 6.

Classical gradient based learning -> walking on a manifold via a continuously differentiable function
and the dimension is ... (DNN?)

Special metrics on NN [Ollivier et al., 2015] for better optimization. Fisher information (F(B) or ly)is a
special case of Hessian metrics [Shima et al., 1995, Amari, 2000]:

F(0) := E(Vylog P(X|0)Vgelog P(X|0)")



sidenote: Fisher information

In particular, if P(X|0) is a probability density function, then the ij-th entry of F(6) is

o = [ PXI0)(55 og PX10)) (- log P(X[6))X

If we refer the vector Gy = V, log P (X|8) as the Fisher score of the example X, we can define a
mapping X -> G, F-1?2 and a kernel

Ky(z,y) :=GLF G,

An intuitive interpretation is that Gy gives the direction where the parameter vector 6 should be
changed to fit best the data X.

Why F1? Steepest (the gradient has fixed length) natural gradient by Shun-ichi Amari
[Amari,1996]!

It can be proved that the Fisher metric under congruent embeddings by Markov morphisms is
distance preserving (isometry) [Cencov,1982]

Moreover the Fisher metric is essentially the unique Riemannian metric with this property
[Campbell,1985,Campbell,1986, Lebanon, 2004, Petz et al.,1999, Jaakkola and Haussler, 1998].



Fisher-Rao metric and complexity of neural
networks [Liang et al., 2017]

P e {Py|6 € OL)

1. Let data generating process belong to a parametric fam

2. Fisher-Rao metric on a parametric family is defined via an inner product for each configuration
3. For each pair of parameter (drawn from the fam.) define a pair of tangent vectors:

o = dp9+tﬂt/dt‘t={)? B .= dpﬁ'-l-tﬁ/dt‘t:[]

and a local inner nrndiirt Innedaf -~ Fichar-Ran _rnetric):

<C_}f, B>pe ‘= Ei ?i Po

Seems like something connected to Fisher information, and no surprise it is:

(@, B)py = e, 1683



Fisher-Rao metric and complexity of neural
networks [Liang et al., 2017]

Equivalence classes are determined by FR.

Definition 2. The Fisher-Rao norm for a parameter FR vs. a-scaling?

0 is defined as the quadratic form |0||z. = <{6,1(6)6)
where 1(0) = E[Vol(fo(X),Y) ® Vol(fo(X),Y)].

Corollary 3.1 (Invariance). If there are two param-

Theorem 3.1 (Fisher-Rao norm). Assume the loss eters 01,02 € O such that they are equivalent, in the

function £(-,-) is smooth in the first argument. The sense that fo, = fo,, then their Fisher-Rao norms are
following identity holds for a feedforward neural net- equal, i.e., ||01]& = ||02] -

work (Definition |1) with L hidden layers and activa-

tions satisfying o(z) = o'(2)z:

ag(fG(X)?Y
0fo(X)

2 u . .
16]7. = (L + 1)21E< ),fQ(X)> . (3.1) Is there any relation to generalization?
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Martens, James, and Roger Grosse. "Optimizing neural networks with kronecker-factored approximate = |
curvature." In Internationdl donferehce‘ed matMrdidarnihg, pp. 2408-2417. 2015. Fun fact: [Heskes, 2000]

»

layerl
-1 layer2
layer3

;! —1 -1 -1
F 0 ~ ' ~ X O
Kronecker product
FIM Block-diagonal Kronecker factorization of diagonal block
Kronecker
product (AB) '=A"'@B™!
(inverselllll):

[A]1,1B [A]I,HB
A@B:=( :

. . . eRmu}{nb
. . . @

m,l

A]

T

A € R™*" B € R**?: Kronecker factors

Fisher information:

(%)

Fisher score:

a;_1 o Rd?— 1 : the input to i-th layer (activation of (i-1)-th layer)
OF (0
g, — ( ) - Rdi : the gradient for the output of i-th layer
88?;
thus
~ T T \ T
F, = [gigi] & It [ai—lai—l]
= G;®A,;_

Fi c Rdi—l'di Xdi—1-d;
Ai—l c Rdz‘—l Xd;_1
G, ¢ Rd: X d:



K-FAC [Martens & Grosse, 2015}

All layers in AlexNet

60,000,000 parameters Fisher information:
Fisher information matrix ~1 F.— E [V | E( 9)\7 E ( B)T]
Fy € [R60,000,000x 60,000,000 " (x,y) ’ ’

Fisher score:

Final layer of AlexNet V-E(Q) — g, ®a;, € Rdi_l-di
1 T 1 1—

Input dimension: 4,096 @
Output dimension: 1,000 Great! Wait a minute, Why a,_1 € Rdi—l : the input to i-th layer (activation of (i-1)-th layer)
4,096,000 parameters are we even doing this? 9E(0
g, = ( ) - ]Rdi : the gradient for the output of i-th layer
Fisher block Js;
F, ¢ R%096,000x4,096,000 thus
~ T T Y T
K ker fact F; ~F [g’igi ] 9 I [ai—lai—l]
ronecker factors
@ = G;®A;_;
A, ;€ R4,0964,096 S

Fi = Rdi—l'di Xdi—1-d;
Ai—l c Rdz‘—l Xd;_1
G, ¢ R xd;

G. ¢ Rl,OOO x 1,000
(



. . : |deal 2nd-order ‘ , ! ;
K Fﬁ Gradient descent: GD w/ momentum: method: 2 2 1 ]

e b

All layers in AlexNet

60,000,000 parameters Fisher information:

(%)

Fisher information matrix
Fy c R 60,000,000 60,000

: Fisher score:

Final layer of AlexNet Q' DeepMind KEAC JamaiManet S o , d;_1-d;
Input dimension: 4,096 @ 2(0) =gi®ai1 R
?g;p;t)g?ensmn:ttooo Natural grad|ent a,_1 € Rdi—l : the input to i-th layer (activation of (i-1)-th layer)
,UJ0,UUU parameters [Amari, 1998] is finally
. ’ OF (60
possible on large-scale NN! g, = 8( ) € R : the gradient for the output of i-th layer
Fisher block Si
4 4 . thus
F, ¢ R%096,000x4,096,000
- T - T
. ~ |H . < .
Kronecker factors Fy = [gggi ] @ [ai_lai_l]
@ = G;®A;_1

4,096 x4,096 1 -
A;,_1 €R 0®a

Fi = Rdi—l'di Xdi—1-d;
Ai—l c Rdz‘—l Xd;_1
G?; - Rd’f‘Xdi’

G. ¢ Rl,OOO x 1,000
(



Outline

1. Generalization: Vapnik-Chervonenkis theorem and deep neural
networks

2. Information geometry of neural networks: Fisher-Rao norm
and KFAC approximation of Fisher information

3. Complexity of RelLU networks: evaluation of linear regions and
tangent space sensitivity



Complexity of linear regions

Hanin & Rolnick, Deep RelLLU Networks Have Surprisingly Few Activation Patterns, 2019
Hanin & Rolnick, Complexity of Linear Regions in Deep Networks, 2019

Input dim 1

jndino uondund

Input dim 2

Given a vector O of its trainable parameters, N computes a continuous and piecewise linear
function x @ — N (x; 8). Thus each 8 is associated with a partition of input space R"PUt into

activation regions, polytopes on which N (x; 8) computes a single linear function corresponding
to a fixed activation pattern in the neurons of N .




Complexity of linear regions
[Hanin & Rolnick, 2019](2x)

o express

Input dim 1

1.surprisingly small gap between F,.,and F,__,,

2.the number of activation regions at start

(#neurons)?/2) is not increasing exponentially during

training

What is the difference between the maximum complexity of deep networks (exponential [Montufar et al.,

2014]) and the complexity of functions that are actually learned in case of ReLU networks?



Complexity of linear regions
[Hanin & Rolnick, 2019](2x)

1 2 1 2 1 2
Input x — — Sawtooth(x)
1 N4 1 74 1 “4
0.5 0.5 0.5

Extreme states (exp. number of
regions) are not stable!

Even with small perturbations the
complexity may fall...

Activation regions (input points with the same neuron activation pattern) are convex -> Are
linear regions (connected components where the function is linear) convex?



Complexity of linear regions
[Hanin & Rolnick, 2019](2x)

Activation regions (for any piecewise linear activation, ot just RelLLU) are convex -> Are linear
regions convex?

No, they are not!

Imagine a two convex regions joined together with a smooth (diff.!) border... or just a C-
shaped smooth linear region with three convex activation regions.

The number of activation regions is always at least as large as the number of linear regions.

E.g. an entire layer of the network is zeroed out by Rel.Us, leading many distinct activation
regions to coalesce into a single linear region.



Complexity of linear regions
[Hanin & Rolnick, 2019](2x)

Main result: upper bounds on the average number of activation regions per unit volume of input space for a feed-forward RelLLU

net with random weights/biases.
Theorem 5 (Counting Activation Regions). Let N be a feed-forward ReLU network with no tied

weights, input dimension n;,, output dimension 1, and random weights/biases satisfying:

1. The distribution of all weights has a density with respect to Lebesgue measure on R7Ve1&hts,

2. Every collection of biases has a density with respect to Lebesgue measure conditional on
the values of all weights and other biases (for identically zero biases, see Appendix|D).

3. There exists Cgraq > 0 so that for every neuron z and each m > 1, we have
sup E[[|Vz(z)|™] < Cgraa:

;;[:ER"‘in
4. There exists Chias > 0 so that for any neurons z1, . . ., zi, the conditional distribution of the
biases Pb.. ,....bs, of these neurons given all the other weights and biases in N satisfies
k
SUp  pb,,,..,b. (015, 0k) < Cpias.
b1,...,.bx €ER

Then, there exists 09, 1" > 0 depending on Cgraq, Chias With the following property. Suppose that

0 > dg. Then, for all cubes C with side length 0, we have

£ [#non-empty activation regions of N in C] < (T#neurons) ™ /n;,!  #neurons > ny,
vol(C) — | 2#neurons #neurons < n;,

)

Here, the average is with respect to the distribution of weights and biases in N .
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P Complexity of linear regions [Hanin & Rolnick, 2019]

-~
E.g. Average number of activation patterns in N over all of R"is at most (#neurons)"/n!, its value for depth 1 networks
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The average number of activation regions in a 2D cross-section of input space, for fully connected networks of various
architectures training on MNIST. (so (#neurons)?/2 in this case as nis 2)

Wait a minute: what happened with the number of activation regions throughout training?
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Effect of different noise levels on a [32,32,32] network, still MNIST. There are slightly, but not exponentially, more regions when memorizing more



2D points with
random binary
labels ->
memorization
(predicted
#act.regions: 4608).

Complexity of linear regions [Hanin & Rolnick, 2019]
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The number of regions increased during training, and increased more for greater amounts of memorization.

The exception for the maximum amount of memorization, where the network essentially failed to learn -> insufficient capacity?

5000 2D points with
random binary
labels (approx. 4608
regions), different
weight scales and
learning rates.

The number of activation regions after training increases slightly with increasing memorization, until the task becomes too hard for the network and

training fails altogether.

Varying the learning rate yields slight increase -> hypothesis: the small increase in activation regions is probably not a result of hyperparameter choice.
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What happens if we initialize biases to zero:

(a)

Initialization Epoch 1 Epoch 20

‘

Conclusions:

1. The number of activation regions learned in practice by a ReLU network is far from the maximum possible and
depends mainly on the number of neurons in the network, rather than its depth.

2. If network gradients and biases are well-behaved (~ bounded biases and gradients), the partition of input space
learned by a deep RelLU network is not significantly more complex than that of a shallow network with the same

number of neurons.

Holds only for simple RelLLU nets with no ties and biases, they believe that their results are true for residual and
convolutional networks.



Tangent space sensitivity and the

distribution of activation reglons D., 2020]
Hypothesis: stability of GD metHods depends

Green points represent on the stability of tangent mapping
SGD steps on LL

5 Tangent map and mini-batch learning-> a
Y == = L. step inside a “random walk” is a result of a
) | & . _ consensus of the tangent mapping of a small
> ‘ L set. Can we trust it?

(smooth)
Adversarial case”? Non-smooth
augmentatton?

I

f Let us assume Gaussian perturbations
|

L

. oss surface

0.0 -5 —'4 2 1 6 1
for simplicity here we fixed the bias (b) to a particular and good value Gradlent vectors at
step zero



Effect of small perturbations on tangent mapping?

Gaussian |lz — ()], <p
perturbed
example:  §(z) = z—(x) ~ N(0,cI)

Es() Vo f(z;0) — Vof (¢(z);0)| 3]

Change in

the tangent NEé(m)[ avgg ix; 9)5(33) ]

space: 2
< .||[0Vef(z:0) ’
= € ox 5

Definition 3.1. Tangent sample sensitivity of a para-
metric, smooth feed-forward network f with output in

R%wut at input = € R%~ is a Ny X d;,, dimensional ma-

. Vof(x;0 2 f(x:0
trix, Sension(x;0) = Qféx )l‘*‘w = ('9];(83:)‘9,;3' We

define tangent sensitivity as the expectation of tangent

sample sensitivity: Sensiun(0) = Exwp|Sensian(x;0)].

#active neurons per layer

(a) Layer-1

(c) Layer-3

00000

(e) All neurons

Tangent space sensitivity and the
distribution of activation regions

(b) Layer-2

lllllllllll

ttttttt
training set

00000

00000

aaaaaaaaaaaa

(a) MNIST [LeCun et al., 1998]

llllllllllll

(b) CIFAR-10 [Krizhevsky et al., 2009|
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(d) u=0.48Ny, 0 = 0.04Ny (1b), log-scale

Tangent sensitivity and the effect of various network parameters and #layers

Proposition 3.2. For £ ~ D and a biasless feed-
forward ReLU network with w,q4,, = maxyeq,
with the number of active nodes T'(x) following a
normal distribution N (u, o), the Forbenius norm of

tangent sensitivity is upper bound by

) 2871 (D(k/2))

1.2k I v? (Hz 1Wmaz; )2 (1)

Nﬂdina2(k_1

where ¥ = U(—(k — 1)/2,1/2,—u?/(20?)) is Krum-
mer’s confluent hypergeometric function.

Lemma 3.1. For each element in an activation region
R(A;0) tangent sample sensitivity is identical.

thus
EmND[HSensmn(x;H)H%] =

EANp(A;a:,O) [Hsenstan (Av 0) H%‘]

Distribution of activation regions
(compact input space)

Q: Volume of convex polytopes?
(

see [Lovasz & Simonovits, 1993]
N ~AvvAe7 R \/amnala 2O.NNA]



Conclusions and future work

We know much more than five or ten years ago about deep neural networks.
Evolution of linear regions could be the key.

Some ideas:

1. Tangent representations: rank of tangent mapping vs. representation learned by the network
Pryy~D(Ezs y ~D[Vuf(2)" GuVu f(2*)ly = y*] —Eox yoan[Vuf(2)' GV f(@)|ly # y*] > €)

1. Graph limits: take the gradient graph, identify “representation sets” (regularity lemma) /-
and check randomness \m\ \-

1. Pushforward, local diffeomorphisms

Find lower or higher dimensional, but a sparser tangent space:
I. dot product representation of the "gradient graph” (not planar)
Ii. Johnson-Lindenstrauss theorem -> random orthogonal projection, e
independent of the dimension of the manifold
non trivial network structures? Ensemble of structures.

1. Lie groups -> left/right/bi-invariant transformations
[Myers & Strodeent, 1938, Rao and Ruderman, 1999,
Hyland and R atsch, 2016, Wisdom et al., 2016, Ox et al., 2017]
Some interesting results: [Pascanu & Bengio, 2014,Sra et al, 2018]

Thank you!



